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James W. Alexander II:
the first knot polynomial

First definition using Dehn’s knot group.

Normalization by Conway: ∆(K ) ∈ Z[t, t−1].

Skein relations

∆
( )

−∆
( )

=
(
t − t−1

)
∆
( )

.

∆
( )

= 1
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Kurt Reidemeister:
playing with diagrams

La Trahison des Images, Magritte, 1928 Reidemeister moves

Theorem (Reidemeister, 1927)

Two knot diagrams represent the same knot if and
only if they can be related by Reidemeister moves.
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Vaughan Jones:
quantum topology

Definition using Von Neuman algebras.
V (K ) ∈ Z[q, q−1].

Skein relations

q−2V
( )

− q2V
( )

=
(
q − q−1

)
V
( )

.

V
( )

= q + q−1

Reshetikhin–Turaev: reformulation and generaliza-
tion using quantum groups and R-matrices.
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Mikhail Khovanov:
categorification

Knot homology

Generalization:
Khovanov–Rozansky

Link to topology:
Jake Rasmussen

Toward smooth 4D-
Poincaré conjecture?



Demystifying categorification

Usual slogan

Trade natural (relative) integers for (complexes of) vector spaces.

A more accurate statement

Realize a ring as Grothendieck group of a category.

K0(C) =
〈
[X ],X ∈ ob(C)

∣∣∣∣ [Y ] = [X ] + [Z ],when
0 → X → Y → Z → 0

〉
, ⊗↭ ·

K0(K−vect) ≃ Z
[V ] 7→ dim(V )

K0(K−kom/h) ≃ Z
[C ] 7→ χ(C )

Example (Cellular homology)

X , CW-complex

C•(X ), (up to hom.)

χ(X ) (in Z)
cell. hom.

Euler char.

K0
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Demystifying categorification: Khovanov homology

Categorification of the Jones polynomial

K , knot

Kh•,•(K ), (up to hom.)

J(K ) (in Z[q, q−1])

Khovanov hom.

Jones pol.

K0

Here C = kom(Z−modgr)/h and
K0(C) ≃ Z[q, q−1] (via the graded Euler characteristic)
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Toward the foam evaluation formula: glN-polynomial

Let N ∈ N∗, ⟨·⟩ = ⟨·⟩N is a polynomial link invariant.

Skein relation

q−N
〈 〉

− qN
〈 〉

=
(
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) 〈 〉
,

〈 〉
= qN−q−N

q−q−1

m n
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n

n

m

m
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k

n + k m − k

4

4

31 22

Web

Γ 7→ ⟨Γ⟩ ∈ N[q±1]

K ⇝
∑

aiΓi

7→ ⟨K ⟩ =
∑

ai ⟨Γi ⟩ ∈ Z[q±1]
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Toward the foam evaluation formula: glN-homology

Hypercube of resolutions + “Singular 1+1-TQFT”

F : Web Γ 7−→ graded module

Foam F 7−→ graded module map

Foam

a

a + b

a
b

a + b + c

a + b
c
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b

b + c
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The foam evaluation formula

Definition (R-Wagner, [2])

τ(F ) =
∑
c

(−1)
∑

i
iχ(Fi (c))

2
+
∑

i<j θ
+
ij (F ,c)

∏
f

Pf (c(f ))∏
i<j

(Xj − Xi )
χ(Fij (c))

2

∈ Z[X1, . . . ,XN ]
SN

Theorem (R–Wagner, [2])

The universal construction
applied on τ gives rise to a
singular 1+1-TQFT FN .
It categorifies the exterior MOY calculus.

Theorem (R-Wagner, [2])

The functor FN and the
hypercube of resolutions gives a
definition of the (colored and
equivariant) glN -homology.
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The foam evaluation formula: some consequences

Theorem (Ehrig–Tubenhauer–Wedrich, 2018)

The glN -homology is fully functorial.

Khovanov–R, [17]

Combinatorial counterpart to Kronheimer–Mrowka SO(3)-gauge
theory.

Theorem (Qi–R–Sussan–Wagner, [7,8])

The glN -homology can be endowed with an sl2-module structure.

Project (Guérin–Roz)

Endow glN -homology with an action of the half-Witt algebra.
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Symmetric homology

Can we play the same game with symmetric powers?

No, but. . . yes if we restrict to vinyl graphs and vinyl foams.
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From the equivariant part of τ , definition of evaluation σ of “closed” vinyl foams.

Theorem (R–Wagner, [3])

▶ The universal construction applied on σ gives rise to a singular
1+1-TQFT GN categorifying the symmetric MOY calculus.

▶ The functor GN and the hypercube of resolutions gives a definition
of the symmetric glN -homology.
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Symmetric homology

Theorem (R–Wagner, [3])

There is a spectral sequence from the triply graded homology to
the symmetric glN -homology.

Unlike in the exterior setting, the case N = 1 is already non-trivial
(although it categorifies the trivial invariant).

Conjecture (Marino, 2023)

The symmetric gl1 homology has the same rank as the reduced
triply graded homology.
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gl0-homology

By “localizing” the symmetric gl1-homology, one obtains another
homology theory, that we call gl0-homology.

Theorem (R–Wagner, [4])

▶ The gl0-homology is a knot invariant, which categorifies the
Alexander polynomial.

▶ There is a spectral sequence from the reduced triply graded
homology to the gl0-homology.

Theorem (Beliakhova–Putyra–R-Wagner, [6])

When working over Q, there is a spectral sequence from the
gl0-homology to knot Floer homology.
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gl0-homology

Corollary (Dunfield–Gukov–Rasmussen conjecture)

There is a spectral sequence from the reduced triply graded
homology to knot Floer homology.

Corollary

Reduced triply graded and gl0-homology detect: the unknot, the
two trefoils, the figure-eight and the knot 51.
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with |c(e)| = t(e) and flow cond.
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ρ = # ⟲ −# ⟳

deg(c) =
∑

i<j ρ(Γij(c))

Definition (R, [1])

⟨Γ⟩ =
∑

c q
deg(c)



Claim

▶ For a given N and given Γ, the degree of all colorings have the
same parity.

▶ ⟨Γ⟩ is symmetric in q ↔ q−1.

Conjecture

For any N and any Γ, the polynomial ⟨Γ⟩ is unimodal (its
coefficients increase then decrease).

Problem

▶ Find an efficient way to compute the degree of ⟨Γ⟩.
▶ Find a condition for ⟨Γ⟩ to be monic.

▶ Given a colored web (Γ, c), find a colored foam (F ,C ), with
∂F = Γ and ∂C = c.
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Definition

Two colorings are
Kempe equivalent if
one can transform
one into the other
using Kempe moves.

Question

Are all colorings of a
given web Kempe
equivalent?

Yes if N ≤ 3.
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Thank you!


