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MOY GRAPHS [3]
A MOY graph is a planar, trivalent, ori-
ented graph whose edges are labeled by
positive integers and with conservative
flow.
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In the category Foam:

• Objects are MOY graphs,
• Morphisms are cobordisms be-

tween MOY graphs aka foams.
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MOY CALCULUS [3]
Using the following local relations one
can compute the Reshetikhin–Turaev
link invariants associated with exterior
powers of the standard representation of
Uq(slN):〈
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A MAGIC FORMULA: THE slN-FOAM EVALUATION
A foam is a finite CW-complex (with additional combinatorial data) with 3 local models:

a

a+ b

a
b

a+ b+ c

a+ b
c

a

b

b+ c

τN(F)=
∑

c∈colN(F)

(−1)
∑N
i=1 iχi(F(c))/2+

∑
1≤i<j≤N θ

+
ij(F(c))

∏
f Pf(c(f))∏

1≤i<j≤N(yi − yj)
χij(F(c))

2

∈ Z[y1, . . . , yN]SN

EXAMPLE (N = 4,P = {y1, y2, y3, y4})
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y1y2 y1y3 y1y4 y2y3 y2y4 y3y4

χ•• 0 2 0 2 0 2

θ+•• 2 0 2 0 0 0

(−1)1+2+4+2+2(y1 + y2 + y4)y1
2(y2y4(y2 + y4))

(y1 − y3)(y2 − y3)(y3 − y4)

P1 = t1 + t2 + t3
P2 = t

2
1

P3 = 1
P4 = t1t2(t1 + t2)

P Monochrome χ•

y1 2

y2 2

y3 0

y4 2

THEOREMS [4]
1. The slN-foam evaluation together with
the universal construction [1] provides a
functor

FN : Foam → Z[y1, . . . , yN]−modgr

which categorifies the MOY calculus.

2. The functor FN together with the
Rickard complexes associated with
crossings provides an equivariant
link homology which categorifies the
Reshetikhin–Turaev invariants asso-
ciated with exterior powers of the
standard representation of Uq(slN).

SYMMETRIC POWERS [5]
The same formula (modulo a level-rank
duality) gives rise to similar theorems for
symmetric powers of the standard repre-
sentation of Uq(slN). We need to change
the category: we work with vinyl graphs
and tube-like foams.
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PROJECTS
•Adapt the formula to deal with instanton homology of webs [2] (with M. Khovanov).
•Modify the symmetric theory at N = 1 in order to categorify the Alexander polyno-
mial (with E. Wagner).
• Find an analogue formula for foams of type D (with E. Wagner).
• Give a foamy interpretation of the Hochschild homology of Soergel bimodules.


