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INTRODUCTION AND DISCLAIMER

1. LECTURE 1: glN -INVARIANTS VIA GRAPH COLORINGS

If H is a quantum group and L is a link colored with finite dimensonial H-
modules, Reshetikhin–Turaev associate to this data a Laurent polynomial in q. In
this first lecture, we aim to describe these link invariants in term of graph coloring
in the case H =Uq(glN ) and the H-module are (quantum) exterior powers of V , the
standard representation of H. If N = 2, the only relevant representation is V itself
and the the invariant is the Jones polynomial. For general N, if all components
are colored by V , the invariant is called the glN polynomial and is denoted PN . It
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2 LHR

satisfies the following skein relation:

q−N PN

 − qN PN

 = PN

  .

We will actually first focus on a framed version of these invariant: they satisfy a
Reidemeister I up to normalization.

The content of this lecture follows [MOY98] and its reinterpretation given in
[Rob15].

1.1. Quantum binomials. In all lectures, q is a formal parameter. The aim of this
section is to give a quantum version of the following identity:

#P a
(
JnK

)= (
n
a

)
.

cardinal
powerset

only subsets
with a

elements

{1, . . . ,n}

a choose n

Namely:

#qP a
(
JnK

)= [
n
a

]
.

quantum cardinal
endow JnK with <

quantum binomial

In this formula and everywhere else, q is a formal variable.

For k in Z, define [k]= qk − q−k

q− q−1 =
k∑

i=1
q−k−1+2i ∈Z[

q, q−1]
, if k ≥ 0, define [k]!=

k∏
i=1

[i] ∈
Z

[
q, q−1]

, with the usual convention that an empty product is equal to 1 ∈Z[
q, q−1]

.
Finally, if n,a ∈Z, define[

n
a

]
=


a∏

k=1

[n+1−k]
[k]

if a ≥ 0,

0 ortherwise.

Remark 1.1. (1) At this stage it is not clear that

[
n
a

]
belongs to Z

[
q, q−1]

.

(2) For k ∈ {−1,0,1}, [k]= k;
(3) For k ∈Z, [−k]=−[k];

(4) For n,a ∈Z,

[
n
a

]
= (−1)a

[
a−n−1

a

]
;

(5) For n,a ∈Z≥0,

[
n
a

]
= [n]!

[a]![n−a]!
.

Lemma 1.2. The following identities hold:

(1) [m+n]= q−n[m]+ qm[n]= qn[m]+ q−m[n]
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for any m,n in Z.

(2)

[
n
a

]
= qa

[
n−1

a

]
+ qa−n

[
n−1
a−1

]
= q−a

[
n−1

a

]
+ qn−a

[
n−1
a−1

]
.

for any n,a in Z.

Proof. Computations left to the reader. �

Corollary 1.3. Quantum binomials are in Z
[
q, q−1]

and respect have a parity prop-
erties: exponents appearing are either all even or all odd. Moreover, they are symmet-
ric under q 7→ q−1.

Sketch of proof. If n is nonnegative, argue by induction on n, using that
[n

n
]= [n

0
]= 1

which follows from the definition for all nonnegative n. If n is negative, use Re-
mark 1.1 (4) and the result for n ≥ 0. �

Definition 1.4. A weighted set is a set X together with a map wX : X →Z. If X is a
finite weighted set, the quantum cardinal of X is given by the following formula:

#q X = ∑
x∈X

qwX (x) ∈Z≥0
[
q, q−1]

.

Exercise 1.5. If X and Y a two finite weighted sets, X ×Y is weighted by declaring
that wX×Y ((x, y))= wX (x)+wY (y). Prove that #q(X ×Y )= #q X#qY .

Definition 1.6. Let (X ,≺) be a finite ordered set and Y ∈ P (X ). Define the weight
of Y relatively to X by:

w(Y )= wP (X )(Y ) :=# {(x, y) ∈ (X \Y )×Y such that x ≺ y}

−# {(x, y) ∈ (X \Y )×Y such that y≺ x} .

With the last definition, we see that if X is ordered, then for any nonnegative
integer a, Pa (X ) is naturally weighted

Proposition 1.7. For all a,n in Z≥0, one has:

#qPa
(
JnK

)= [
n
a

]
.

Idea of the proof. One shows that #qPa
(
JnK

)
satisfies relation (2) and conclude by

induction. �

1.2. MOY graphs.

Definition 1.8. A MOY graph1 is a trivalent oriented plane2 graph Γ= (V (Γ),E(Γ))
endowed with a thickness function ` : E(Γ) → Z≥0 such that the neighborhood of
every vertex v is given by one of the two following local models:

a+b

ba a+b

ba

The first is called a split vertex, the second a merge vertex. The edge with thickness
a+ b (resp. a, resp. b) is called the thick (resp. thin left, resp. thin right) edge at v.
This edge is denoted e t(v) (resp. e l(v), resp. er(v)). Vertexless loops are allowed.

1MOY stands for Murakami–Ohtsuki–Yamada. These graphs are often called webs in the literature.
2Plane means embedded in R2 rather than embeddable in R2.
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Example 1.9.

21

1

12

3

3

4 1 2

Definition 1.10. Let Γ be a MOY graph. A glN -coloring (or simply coloring) is a map
c : E(Γ)→P

(
JNK

)
, such that:

(1) For all edge e, #c(e)= `(e).
(2) For every vertex v, c(e t(v))= c(e l(v))t c(er(v)).

The set of glN -colorings of Γ is denoted colglN (Γ) or simply col(Γ).
For i < j ∈ JNK, denote Γi j(c) union of edges e of Γ such that {i, j}∩ c(e) = 1. Keep

the orientation of edges containing j and reverse the ones containing i. Γi j(c) is an
oriented closed curve in R2.

Example 1.11.

{1,4}{2}

{4}

{1}{2,4}

{1,2,4}

{1,2,4}

{1,2,4,5}

{5} {1,4}

N = 5
JNK= {1,2,3,4,5}
Γ2,4 is depicted
w(Γ2,4)= 2

If γ is a finite disjoint union of oriented circles denote w(γ) the number of posi-
tively oriented circles minus the number of negatively oriented circles in this collec-
tion. For c a glN -coloring, define:

w(c)= wglN (c)= ∑
1≤i< j≤N

w(Γi j(c)).

By this mean, the set colglN (Γ) is endowed with a weight function.

Definition 1.12. Define the glN evaluation of a MOY graph Γ by the following for-
mula:

〈Γ〉glN = #qcolglN (Γ)= ∑
c∈colglN (()Γ)

qwglN (c) ∈Z≥0
[
q, q−1]

.

Example 1.13. 〈
a

〉
glN

=
〈

a

〉
glN

= #qPa
(
JNK

)= [
N
a

]
.
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Lemma 1.14. (1) 〈Γ〉 is invariant under ambient isotopy.
(2) For any MOY graph Γ, 〈Γ〉 is symmetric under q 7→ q−1.
(3) For any MOY graph Γ,

〈
Γ
〉
= 〈Γ〉, where Γ denotes a mirror image of Γ

(4) For any MOY graphs Γ1 and Γ2, 〈Γ1 tΓ2〉 = 〈Γ1〉〈Γ2〉.

Sketches of proof. Item (1) is obvious
Item (2) follows from the fact that

ι : JNK → JNK
k 7→ N +1−k

induces an involution on col(Γ) such that w(ι(c))=−w(c).
Item (3): there is a natural bijection col(Γ) 3 c 7→ c ∈ col(Γ) and w(c) = −w(c).

Conclude with point (2).
Item (4): there is a natural isomorphism of weighted sets between col(Γ1tΓ2) and

col(Γ1)×col(Γ2). The result follows from Exercise 1.5. �

Proposition 1.15. The following skein theoretic3 relations hold:

(3)

〈
a+b

ba

〉
=

[
a+b

a

]〈
a+b

〉
,

(4)

〈
a+b+ c

a b c 〉
=

〈
a+b+ c

cba 〉
,

(5)

〈
a

b

〉
=

[
N −a

b

]〈
a

〉
,

(6)

〈
1

a+1 a+1

a
1 1

a a

〉
=

〈 1

a

〉
+ [N −a−1]

〈 1

a

1

a

a−1

〉
,

(7)

〈
a

a

b

b

1

1 〉
=

〈
b

b

a

a

1

1 〉
+ [b−a]

〈
a b

〉
.

Proof. We only prove some of them in some special cases, the general case and the
rest of the relations are left to the reader.

Relation (3) for a = b = 1. Let us close up both side of the identity and denote Γ
the MOY graph on the right-hand side and Γ′ that on the left-hand side. Γ and Γ′ are
equal except in a ball, where:

Γ=
2

and Γ′ =
2

11 .

3They hold no matter how one closes everything up.
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There is a 2 : 1 correspondence between col(Γ′) and col(Γ):

{i0 , j0}

{ j0}{i0}

c′1

!
{i0 , j0}

c

!
{i0 , j0}

{i0}{ j0}
.

c′2
To fix the setup, say that i0 < j0. If, {i, j} 6= {i0, j0}, the oriented curves Γ′i j(c

′
1) and

Γ′i j(c
′
2) are equal and isotopic to Γi j(c). Moreover

w
(
Γ′i0 j0

(c′1)
)
= w

(
Γi0 j0 (c)

)+1 and w
(
Γ′i0 j0

(c′2)
)
= w

(
Γi0 j0 (c)

)−1,

so that
w

(
c′1

)= w (c)+1 and w
(
c′2

)= w (c)−1,

Finally, one has:〈
Γ′

〉= ∑
c∈col(Γ)

qw(c′1) + qw(c′2) = ∑
c∈col(Γ)

(q+ q−1)qw(c) = [2]〈Γ〉 .

Relation (25) for a = b = 1. As before we close up both side of the identity and
denote Γ the MOY graph on the right-hand side and Γ′ that on the left-hand side. Γ
and Γ′ are equal except in a ball, where:

Γ=
1

and Γ′ =
1

1 .

There is a N −1 : 1 correspondence between col(Γ′) and col(Γ): {i0}

{i0 , j0}{ j0}

c′j0


j0∈JNK\{i0}

!
{i0}

c

Let i < j ∈ JNK. Unless {i, j}∩ {i0, j0} 6= { j0}, one has w
(
Γi j

(
c′j0

))
= w(Γi j(c)) and

w
(
Γi j0

(
c′j0

))
=

w
(
Γi j0 (c)

)+1 if i < j0,

w
(
Γi j0 (c)

)−1 if j0 > i.

Finally, one has:〈
Γ′

〉= ∑
c∈col(Γ)

∑
j0 6=i0

qw(c′j0 ) = ∑
c∈col(Γ)

qw(c)#qP1
(
JNK\{i0}

)
= ∑

c∈col(Γ)
qw(c)#qP1

(
JN −1K

)= [N −1]〈Γ〉 .

�

Exercise 1.16. Complete the proof of Proposition 1.15.

Theorem 1.17 ([Wu14]). Relations of Proposition 1.15 and Example 1.13 and their
mirror images are enough to compute 〈Γ〉 for all Γ. In other words, the Z

[
q, q−1]

-
module generated by MOY graphs and modded out by these local relations is 1-
dimensional and a base is given by ;, and Γ= 〈Γ〉; in this skein module.

1.3. Link invariants.
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Definition 1.18. A knotted MOY diagram D is an oriented plane graph with va-
lency 3 and 4, endowed with a thickness function ` : E(D)→Z≥0 and a sign function
` : V4(D)→ {±1} where V4(D) is the set of vertices of D of degree 4. The signs function
is depicted diagrammatically as for knot diagram. The neighborhoods of all vertex
of valence 3 are given by that of MOY graphs. The neighborthood of every vertex of
valence 4 is given by one of two following local models:

b

b

a

a

and

a

a

b

b

.

Vertices of degree 4 are called crossings.

Example 1.19. Oriented link diagrams colored by natural integers and MOY graphs
are example of knotted MOY diagrams.

We extend 〈·〉 = 〈·〉glN to knotted MOY diagram by imposing:

〈 b

b

a

a

〉
=

b∑
k=max(0,b−a)

(−1)k−b qk−b

〈
a

b

b

a

k

〉
and(8)

〈 a

a

b

b

〉
= ∑

k=max(0,b−a)
(−1)k−b qb−k

〈
a

b

b

a

k

〉
.(9)

In particular one has:

〈 〉
=−q

〈 〉
+

〈 〉
and(10)

〈 〉
=−q−1

〈 〉
+

〈 〉
,(11)

where unlabeled edges are meant to have thickness 1 and edges represented by a
double line are meant to have thickness 2.
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Example 1.20.

〈
13

〉
=q−2

〈
1 3

2

2

13

〉
− q−1

〈
1 3

4

2

13

〉

− q−1

〈
1 3

4

2

13

〉
+

〈
4

4

1 3 13

〉

=q−2[3][N −2]

[
N
3

]
−2q−1[3][4]

[
N
4

]
+ [4][4]

[
N
4

]
.

Proposition 1.21. The following local relations hold:

(12)

〈 〉
=

〈 〉
=−q−N

〈 〉

(13)

〈 〉
=

〈 〉
=−qN

〈 〉

(14)

〈 〉
=

〈 〉

(15)

〈 〉
=

〈 〉
=

〈 〉

(16)

〈 〉
=

〈 〉

Proof. We only prove some of these identities, the remaining ones are left to the
reader. 〈 〉

=−q−1

〈 〉
+

〈 〉

=−q−1[N]

〈 〉
+ [N −1]

〈 〉

=−q−N
(
qN−1[N]+ qN [−N +1]

)〈 〉

=−q−N

〈 〉
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〈 〉
=− q−1

〈 〉
+

〈 〉
〈 〉

− q

〈 〉

= (−[2][N −1]+ [N]+ [N −2])

〈 〉
+

〈 〉

=
〈 〉

�

The proofs of the following proposition and its corollary are left to the reader.

Proposition 1.22. The following local relations hold;

(17)

〈
a b

a+b

c

〉
=

〈 a+b

a bc

〉
(and 7 analogues),

(18)

〈
ba

a+b 〉
=

〈
ba

a+b 〉
(and 3 analogues).

Corollary 1.23. The polynomial 〈·〉 is invariant under colored Reidemeister 2 and
Reidemeister 3 moves and satisfies the following local relations:

(19)

〈
a

〉
=

〈
a

〉
=−q−a(a−1−N)

〈
a

〉
,

(20)

〈
a

〉
=

〈
a

〉
= (−1)aq−a(a−1−N)

〈
a

〉
,

It is therefore an invariant of colored oriented framed links.

Exercise 1.24. Normalise 〈·〉 to get an invariant of oriented unframed colored links.

2. LECTURE 2: COLORING FOAMS

2.1. Foams and colorings.

Definition 2.1. A foam F is a finite 2-dimensional CW-complex embedded in R3

endowed with a thickness function ` : {2-cells j} → Z≥0 and orientation of 1- and 2-
cells such that the neighborhood of every point has one of the following 3 local models
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(or their mirror images):

a

a+b

a
b

a+b+ c

a+b
c

ab

b+ c

Points with the first (resp. second, resp. third) model are regular (resp. on a binding,
resp. singular vertex). Singular vertices ( ) and bindings ( ) form an oriented 4-
valent graph denoted b(F) (with possibly vertex-less loops).

The connected components of F \ b(F) are called facets should inherit an orienta-
tion from the orientation of 2-cells. As for MOY graphs, there are notion of thin and
thick facets at a binding. We impose that orientation of thin facets are consistent
with that of the binding and that the orientation of the thick facet to be inconsistent
with that of the binding.

Example 2.2. The foam

3

2

5

3

2

1

is the double suspension of
13

2

2

3

5 .

Product of S1 with a MOY graph Γ give an example of a foams without any singular
vertices.

Definition 2.3. A decoration of a foam F is a map P : {facets} f 7→ P f , where P f is a
symmetric polynomial in `( f ) variables. We depict decoration pictorially by adding
dots labelled by symmetric polynomials on facets. Dots behave multiplicatively:

Q1 Q2 = Q1Q2 .

No dots means the constant polynomial equal to 1. A foam is decorated if it is en-
dowed with a decoration.

From now on, all foams are decorated.

Definition 2.4. A glN -coloring (or coloring) is a foam F is a map c : {facets} →
P

(
JNK

)
such that:

• For every facet f , #c( f )= `( f ).
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• At every binding, if one denotes f1 and f2 the two thin facets and f t the thick
one, one has: c( f t)= c( f1)t ( f2).

The set of glN -colorings of F is denoted colN (F) (or simply col(F)).

Observation 2.5. Let us consider a foam F and a coloring c.

(1) Let i ∈ JNK. The (closure of the) reunion of facets f of F such that i ∈ c( f ) is
an oriented surface. It is denoted Fi(c).

(2) Let i < j ∈ JNK. The (closure of the) reunion of facets f of F such that #(c( f )∩
{i, j})= 1 is an oriented4 surface. It is denoted Fi j(c).

(3) The surface Fi j is partitionned into i- and j-colored regions. These are sep-
arated by disjoint circles. Indeed if these circles were to interesct this would
happen at singular vertices, but a quick inpsection of what can happen there
easily clear this out.

(4) Each of these circles can be given a sign5 according to the following conven-
tion:

i j

positive circle

i j

negative circle

The number of positive (resp. negative) circles is denoted θ+i j(F, c) (resp. θ−i j(F, c)).
Finally we set θi j(F, c)= θ+i j(F, c)+θ−i j(F, c).

Lemma 2.6. Given a foam F the quantity

χN (F)= ∑
1≤i< j≤N

χ(Fi j(c))

does not depend on the glN -coloring c.

Exercise 2.7. Prove Lemma 2.6 by providing a formula independent of coloring.

The glN -degree of a decorated foam (F,P•) is denoted dN (F) and is given by the
following formula:

dN (F)=−χN (F)+2
∑

deg(()P f ).

2.2. Evaluation. For what follows we fix X = {x1, . . . , xN } a set of formal variables.
We will be working with polynomial and rational function X and these variables are
meant to he homogeneous of degree 2. If I = {i1, . . . ia}⊆ JNK, X I = {xi1 , . . . , xia }.

Given F a decorated foam and c a coloring, define:

τ(F, c)= τN (F, c)=
(−1)s(F,c) ∏

f facet
P f (X c( f ))∏

i< j
(xi − x j)χ(Fi j(c))/2 ,

where

s(F, c)=
N∑

i=1
i
χ(Fi(c))

2
+ ∑

1≤i< j≤N
θ+i j(F, c).

4Take orientation of facets containing j and reverse the orientation of the one containing i. The ori-
entability of this surface can also be deduced from its embeddability in R3.
5It is possible to remove the embedding in R3 in the definition of foam, in this case, one should had
a cycling ordering of facets around bindings in order to get this signs. A compatibility of these cyclic
ordering needs to be imposed at singular vertices.
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Finally the glN -evaluation of F is given by the following formula:

τ(F)= τN (F)= ∑
c∈col()[N]F

τN (F, c).

Lemma 2.8. Let (F, c) be a colored foam, and c′ be the coloring of F obtained by
swaping i and i+1 on c, then:

τ(F, c)= τ(F, c′)|xi↔xi+1 .

Proof. From the formula of τ(F, c) itself, we get that:

τ(F, c′)= (−1)s(F,c′)−s(F,c)+χ(Fi(i+1)(c))/2τ(F, c)|xi↔xi+1 .

Hence it is enough to check that s(F, c′)− s(F, c) ≡ χ(Fi(i+1)(c))/2, where ≡ means
equality mod 2. We compute:

s(F, c′)− s(F, c)= iχ(Fi(c′))+ (i+1)χ(Fi+1(c′))− iχ(Fi(c))− (i+1)χ(Fi+1(c))
2

+θ+i(i+1)(F, c′)−θ+i(i+1)(F, c)

= iχ(Fi+1(c))+ (i+1)χ(Fi(c))− iχ(Fi(c))− (i+1)χ(Fi+1(c))
2

+θ−i(i+1)(F, c)−θ+i(i+1)(F, c)

≡ χ(Fi(c))+χ(Fi+1(c))
2

+θi(i+1)(F, c)

≡ 2χ(Fi∩(i+1)(c))+χ(Fi(i+1)(c))
2

+θi(i+1)(F, c)

≡ χ(Fi(i+1)(c))
2

.

In this computation, Fi∩(i+1) denotes the oriented surface (with boundary) which is
the reunion of facets f such that {i, j}⊆ c( f ). The number of boundary component of
this surface is precisely θi(i+1)(F, c), hence χ(Fi∩(i+1)(c))+θi(i+1)(F, c) is even. �

Corollary 2.9. The rational fraction τN (F) is symmetric (in the xis).

Example 2.10. Consider the F sphere of thickness 1 decorated by the polynomial
y2 for N = 3. F admits three colorings and one has:

τ(F)= −x2
1

(x1 − x2)(x1 − x3)
+ −x2

2
(x2 − x1)(x2 − x3)

+ −x2
3

(x3 − x2)(x3 − x1)
=−1.

If (F, c) is a colored foam, one can swap i and j along a collection Σ of connected
component of Fi j(c). This operation is called an (i, j)-Kempe move along Σ.

Proposition 2.11 ([RW17]). The rational fraction τN (F) is a symmetric polynomial
of degree dN (F).

The statement about the degree follows directly from the definition of dN (F) and
of τN (F, c) (remember that the xis have degree 2). First note that

τ(F) ∈Z
[

X ,
(

1
x j − xi

)
1≤i< j≤N

]
.
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By symmetry it is enough to show that

τ(F) ∈Z
X ,

(
1

x j − xi

)
1≤i< j≤N
(i, j)6=(1,2)

 .

Before proving this, we’ll need two lemmas.

Lemma 2.12. Suppose that c and c′ are related by a (1,2)-Kempe move along Σ, then
s(F, c′)≡ s(F, c)+χ(Σ)/2.

The proof is a local version of the proof of Lemma2.8.

Lemma 2.13. Let c anc c′ ce two coloring related by a (1,2)-Kempe move along Σ and
let 3≤ k ∈ JNK.

θ+1k(F, c)+θ+2k(F, c)≡ θ+1k(F, c′)+θ+2k(F, c′).

Moreover, there exists tΣ(c,k) ∈ 2Z such that

χ(F1k(c′))= χ(F1k)+ tΣ(c,k), and χ(F2k(c′))= χ(F2k)− tΣ(c,k).

The integer tΣ(c,k) depends only on how Σ is colored by 1,2 and k.

The proof of this lemma is left to the reader.

Proof of Proposition 2.11. Consider the equivalence relation on colN (F) generated by
(1,2)-Kempe moves. Let c be a coloring of F. Suppose that Σ= F12(c) has r connected
components Σ1, . . .Σr, then [c] has 2r elements. We will that that∑

c′∈[c]τ(F, c′) is a quotient A(X )
B(X ) of polynomials in X with B(X ) a product of (xi−x j)

with (x1 − x2) not a divisor of B(X ), from which the result follows.
Let us introduce some notations:

• Denote X ′ := X |x1↔x2 .
• For s ∈ {1, . . . , r}, denote

PΣs (X ) := ∏
f⊆Σs

P f (X c( f )) and P̃(X ) := ∏
f 6⊆Σ

P f (X c( f ))

.
• Denote:

Ts(X )= PΣs (X )
N∏

k=3
(x1 − xk)tΣs (c,k)/ + (−1)χ(Σs)/2PΣs(X ′)

N∏
k=3

(x2 − xk)tΣs (c,k)/2.

• Finally set

Q̃(X ) := Q(F, c)
∏r

s=1
∏

k≥3(x1 − xk)tΣ(c,k)/2

(x1 − x2)χ(F12(c))/2 .

Note that (x1 − x2) does not divide Q̃(X ).

One has: ∑
c∈[c′]

τ(F, c′)= (−1)s(F,c) P̃(X )

Q̃(X )

r∏
s=1

(x1 − x2)−χ(Σs)/2Ts(X )

Developing the right-hand side of this identity gives 2r term each of these corre-
sponding to the contribution of τ(F, c′).

The only problematic factors on the right-hand side are these for whoch Σs is
a sphere. However, in this case, Ts(X ) is antisymetric in x1 and x2 and therefore
disible by (x1 − x2). �
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2.3. Local relations.

Lemma 2.14 (Neck-cutting). The polynomial τ satisfy the following relation:

τ


1

= (−1)N(N+1)/2
N−1∑
i=0

(−1)N−iτ


1

1

N −1

N

EN−1−i

Y i


Moreover, for the operation which consist by stacking onto each other, the foams (with
boundary) on the right-hand side behave as orthogonal idempotents (up to the sign
given in the formula).

Proof. We only prove the local formula. Let us close up the foams identically but
arbitrarily and denote by F the foam on the left-hand side and by (G i)0≤i≤N−1 the
ones on the right-hand side and finally by G the foam on the right-hand side with
decoration Y i and EN−i−1 removed. The colorings of G (and therefore of all the G is)
are of two types: either they give the same color to top or bottom facets or they do
not.

Suppose first that a coloring c give the same color to top and bottom facets. We
may suppose that this color is {1}. In this case this induces a coloring of F (still
denoted by c) and we have

τ(G i, c)= (−1)N(N+1)/2 xi
1EN−1−i(x2, . . . , xN )∏N

k=2(x1 − xk)
τ(F, c).

On the other hand, one has:
N−1∑
i=1

(−1)N−ixi
1EN−1−i(x2, . . . , xN )=

N∏
k=2

(x1 − xk),

so that

(−1)N(N+1)/2
N−1∑
i=0

(−1)N−iτ(G i, c)= τ(F, c).

Suppose now that a coloring c of G give different color on top and bottom. We may
suppose that these colors are {1} on top and {2} on bottom. For such coloring, one has:

τ(G i, c)= (−1)N(N+1)/2+1xi
1EN−1−i(x1, x3, . . . , xN )τ(G, c).

However, one has
N−1∑
i=1

(−1)N−ixi
1EN−1−i(x1, x3, . . . , xN )=

N∏
k=1
k 6=2

(x1 − xk).

so that
N−1∑
i=0

(−1)N−iτ(G i, c).

�
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Lemma 2.15 (Digon-cutting). The polynomial τ satisfy the following relation:

τ


1

1

2

2

= τ


1

1

2

2

Y
−τ


1

1

2

2

Y


Moreover, for the operation which consist by stacking onto each other, the foam (with
boundary) on the right-hand sides behave as orthogonal idempotents (up to the sign
given in the formula).

The proof is easier than that for the previous lemma and is left as an exercise.
There is an analogue lemma which expresses

τ


1

1

2

2

1

1

× [0,1]


as a sum of values of τ on two foams, one factorizes by

1 2

,

the other one by

1 2

1 2

3 .

As before, the two foams behave like orthogonal idempotents.

3. LECTURE 3: UNIVERSAL CONSTRUCTION AND glN -LINK HOMOLOGY

3.1. Universal construction.

Definition 3.1. Let Γ0 and Γ1 be two MOY graphs. A (Γ0,Γ1)-foam F (denoted
F : Γ1 → Γ0) is a CW-complex embedded in R2 × [0,1] which looks locally like a foam
(with decoration) and such that

F ∩R2 × [0,ε)=−Γ0 × [0,ε)

F ∩R2 × (1−ε,1]=−Γ1 × (1−ε,1]

The glN -degree of these foams is define by the same formula as that for closed
foams.

Foams and MOY graphs fit into a category called Foam, objects are MOY graphs
and

Hom(Γ0,Γ1)= {Γ0,Γ1)-foams}
/

ambient isotopy.

The composition is given by concatenation and re-scaling.

Exercise 3.2. Show that the degree of foams is additive with respect to composition.

We now use an idea, which to the best of our knowledge was first formalized in
[BHMV95] and called the universal construction. The aim is to promote τN into a
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functor FN : Foam → RN -modgr, where RN is the graded ring Z[X ] = Z[x1, . . . , xN ]
with every xi homogeneous of degree 2. Grading shifts of graded modules, are de-
noted by powers of q: q6M denote the module M where the degree of each element
has been increased by 6.

Fix a MOY graph Γ and set:

WN (Γ)= ⊕
F : ;→Γ

qdN (F)RN .

In other words, WN (Γ) is the infinitely generated graded free RN -module with an
homogeneous base given by (;,Γ)-foams. We now define a bilinear form (·; ·)N = (·; ·)
on WN (Γ) on this base:

(F;G)N := τN (G ◦F)N ∈ RN

Finally define FN (Γ) := WN (Γ)
/

ker(·; ·)N . This means that
∑

iλiFi = 0 ∈ FN (Γ)
with Fi : ;→Γ and λi ∈ RN if and only if

∑
iλiτN (G ◦Fi)= 0 for all G : Γ→;.

We have defined, FN on objects of Foam. The definition extends for free on mor-
phisms. Note that if F : Γ0 → Γ1 is a foam, it defines naturally a morphism from
WN (Γ0)→WN (Γ1).

Exercise 3.3. Prove that these morphisms pass to the quotient and define a functor
FN : Foam→ RN -modgr.

Proposition 3.4. The functor FN satisfies the following local relations and their
mirror images. Moreover, the isomorphisms are given by local foams:

(21) FN (;)' RN .

(22) FN

(
a tΓ

)
'FN

(
a tΓ

)
'

[
N
a

]
FN (Γ) .

(23) FN


a+b

ba

'
[

a+b
a

]
FN


a+b

 ,

(24) FN


a+b+ c

a b c
=FN


a+b+ c

cba
 ,

(25) FN


a

b

=
[

N −a
b

]
FN


a

 ,

(26) FN


1

a+1 a+1

a
1 1

a a

=FN

 1

a

+ [N −a−1]FN


1

a

1

a

a−1

 ,

(27) FN


a

a

b

b

1

1

=FN


b

b

a

a

1

1

+ [b−a]FN


a b

 .
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Sketch of proof. One uses the local relations of τ. For instance, the pair of morphisms

FN

(
1 tΓ

)
[N]FN (Γ)

(−1)N(N+1/2)

(
FN

( )
· · · FN

(
EN−1

))>
(
−FN

(
Y N−1

)
· · · (−1)N−1FN

( ))
is a pair of mutually inverse isomorphisms. �

Corollary 3.5. For any MOY graph Γ, FN (Γ) is projective (and therefore free, be-
cause RN is a polynomial algebra), and its graded rank is 〈Γ〉N . In other words, FN

categorifies, 〈·〉N .

Proof. Theorem 1.17 tells us that any MOY graph can be reduced in finitely many
steps to ; using these local relations. We can argue by induction on the number of
necessary steps to reduce Γ since a direct factor of a projective module is projective
module. This proves that FN (Γ) is projective. The statement of rank is then obvi-
ous: it is a Laurent polynomial in q which satisfies the same local relation as 〈·〉N .
Theorem 1.17 implies uniqueness of such a quantity. �

3.2. Rickard complexes and hyper-rectangles. The aim of this section is to cat-
egorify the extension of 〈·〉N given by the relations we imposed:

〈 b

b

a

a

〉
=

b∑
k=max(0,b−a)

(−1)k−b qk−b

〈
a

b

b

a

k

〉
and

〈 a

a

b

b

〉
= ∑

k=max(0,b−a)
(−1)k−b qb−k

〈
a

b

b

a

k

〉
.

For this we’ll define complexes of graded RN -modules. We do this locally by defining
(if b ≥ a):
(28)

FN


b

b

a

a

 :=

FN


a b

b a
 q−1FN


a

b

b

a

b−1

 · · ·

· · · q1−aFN


a

b

b

a
1

 q−aFN


a

b

b

a

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and
(29)

FN


a

a

b

b

 :=

FN


a b

b a
qFN


a

b

b

a

b−1

· · ·

· · ·qa−1FN


a

b

b

a
1

qaFN


a

b

b

a


The underline term is meant to be in homological degree 0.
If a > b, the complexes are the same, only the last (or first) diagram need to be

changed: the rung points right instead of left.
The differentials in this chain complexes are given the images by FN of the foams

1

for FN


b

b

a

a

 and

1

for FN


a

a

b

b

.

Exercise 3.6. Compute the degree of these foams.

The degree shifts enssure that the differential are homogeneous of degree 0.
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Example 3.7. For a = b = 1, one has:

(30) FN

  :=
FN

( )
q−1FN

 
FN




and

(31) FN

  :=
FN

( )
qFN

 
FN




Lemma 3.8. The composition of two consecutive arrows is indeed 0 so that FN


b

b

a

a



and FN


a

a

b

b

 are indeed chain complexes.

Proof. The composition of two of these foams is easily seen diagrammatically:

1

1

Colorings of such foams can be organized in pairs that cancels each other (by looking
on how the facets of thickness one in the middle of the square tube are colored):

.

Indeed the only thing which changes in the evaluation of these two colored foams is
s(F, c). The blue cycle contribute to θ+ in one case but not in the other. Hence the
sum of these two evaluations is zero. �
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3.3. Link homology. The construction of link homology starting from FN is very
similar to that of Khovanov homology. In this section, we’ll give idea on how this is
extended to colored links.

Let D be a knotted MOY diagram. Each crossing of type (a,b,±) gives rise locally
to min(a,b)+1 diagrams (ordered by homological degree).

We can organize all these diagrams (with formal q-grading shits) in an hyper-
rectangle of dimension the number of crossings of D.

Example 3.9. Consider the Hopf link colored by 2 and 3:

23 .

Each of the two crossings gives rise to 3 diagrams. Hence we have 3×3= 9 diagrams
to put in an hyper-rectangle:

•

•

•

•

•

•

•

•

•

◦

◦

Replace by the third diagram.

Replace by the second diagram.

We can now form a chain complex as follows:

(1) For each diagram apply the functor (and the grading shift);
(2) Put minus signs on arrows of the hyper-rectangle so that there are an odd

number of minus signs in every (small) square.
(3) Apply the functor on all diagrams and arrows (and add signs following the

previous point).
(4) Take direct sum of all spaces in the same homological degree.
(5) Form a chain complex by considering the sequence of these spaces and maps

between them induced by the (signed) arrows.

What we obtain is indeed a chain complex of graded finitely generated free graded
RN -modules: the square of the differential is indeed 0, because of Lemma 3.8 and of
the sign choice.

Exercise 3.10. Prove that it is always possible to find such a sign assignment and
that different choices of such yields isomorphic chain complexes.

Theorem 3.11. The homotopy type of this chain complex is an invariant of framed
colored oriented link. It categorifies 〈·〉N , and can be turned into an unframed colored
oriented link invariant by some grading shifts.

Sketch of the proof. As for the polynomial invariant, one starts with the uncolored
case. One need to prove invariance under Reidemeister moves (up to some grading
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shifts for Reidemeister I). This can be done essentially using the same strategy as
Bar-Natan’s [BN02] for Khovanov homology. See [Vaz08, ETW18] or [Kho04] for the
sl3-setting which is close but not completely identical to our setting.

Then one proves invariance under fork-sliding and fork-twisting (up to some grad-
ing shifts). See [QR16, ETW18] and finally one deduces from that invariance in the
colored setting as for the polynomial invariant. �

4. LECTURE 4: SYMMETRIC glN HOMOLOGY

4.1. Symmetric MOY calculus. Recall from Lecture 1 that the colored glN polyno-
mial framed link invariant can be computed using the following relations (and their
mirror images:) 〈

a

〉
=

〈
a

〉
=

[
N
a

]
.

〈
a+b

ba

〉
=

[
a+b

a

]〈
a+b

〉
,

〈
a+b+ c

a b c 〉
=

〈
a+b+ c

cba 〉
,

〈
a

b

〉
=

[
N −a

b

]〈
a

〉
,

〈
1

a+1 a+1

a
1 1

a a

〉
=

〈 1

a

〉
+ [N −a−1]

〈 1

a

1

a

a−1

〉
,

〈
a

a

b

b

1

1 〉
=

〈
b

b

a

a

1

1 〉
+ [b−a]

〈
a b

〉
.

〈 b

b

a

a

〉
=

b∑
k=max(0,b−a)

(−1)k−b qk−b

〈
a

b

b

a

k

〉
and

〈 a

a

b

b

〉
= ∑

k=max(0,b−a)
(−1)k−b qb−k

〈
a

b

b

a

k

〉
.

Recall as well, that these identities makes sense for N < 0. However some signs
appears. We can actually get rid of these signs by looking at the number rotational
number of MOY graphs which is a good thing from the categorification perspective.
We obtain a new polynomial ⟪·⟫N associated with knot MOY diagrams which satis-
fies the following identities:
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(32) ⟪ a ⟫=⟪ a ⟫=
[

N +a−1
a

]
.

(33) ⟪
a+b

ba ⟫=
[

a+b
a

]
⟪

a+b

⟫ ,

(34) ⟪
a+b+ c

a b c

⟫=⟪
a+b+ c

cba

⟫ ,

(35) ⟪
a

b ⟫=
[

N +a+b−1
b

]
⟪

a

⟫ ,

(36) ⟪
1

a+1 a+1

a
1 1

a a

⟫=⟪
1

a

⟫+ [N +a+1]⟪
1

a

1

a

a−1 ⟫ ,

(37) ⟪
a

a

b

b

1

1

⟫=⟪
b

b

a

a

1

1

⟫+ [b−a]⟪
a b

⟫ .

⟪
b

b

a

a

⟫=
b∑

k=max(0,b−a)
(−1)k−b qk−b

〈
a

b

b

a

k

〉
and

⟪
a

a

b

b

⟫= ∑
k=max(0,b−a)

(−1)k−b qb−k

〈
a

b

b

a

k

〉
.

We changed definition of the crossings (or equivalently changed q for q−1). The
reason for this change should become clear in a moment.

Proposition 4.1. The ⟪·⟫ is an invariants of oriented framed colored links.

The behavior of ⟪·⟫ regarding the framing is given by:

(38) ⟪ ⟫=⟪ ⟫= q−N⟪ ⟫

(39) ⟪ ⟫=⟪ ⟫= qN⟪ ⟫
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The exponents of q are the same as in (12) and (13. This is the effect of two
different manipulations: on the one hand N is changed to −N on the other hand, q
is changed for q−1.

The signs are changed, this is because Reidemeister I move changes the rotational
of the diagram by ±1.

One can construct a framed invariant QN from ⟪·⟫N which for uncolored links
satisfies:

q−NQN

 − qNQN

 =QN

  .

hence it is equal to PN . However its colored counterpart of QN is different from PN

since the a-colored unknots gives
[

N+a−1
a

]
for the former and

[
N
a

]
for the latter.

Remark 4.2. The binomial
(

N+a−1
a

)
is the number of ways to choose a elements in

JNK with possible repetition. It is possible to give a weigthed counterpart of this fact
to interpret

[
N+a−1

a
]
.

From a representation theoretic point of view ⟪·⟫ deal with (quantum) symmetric
power instead of (quantum) exterior powers.

4.2. Vinyl graphs and foams. In order to categorify ⟪·⟫we need to restrict to braid
closure. This is legitimate because of Alexander and Markov’s theorem.

Theorem 4.3 (Alexander and Markov’s theorem). Every colored link is the closure
of a colored braid and two colored braids represent the same colored link if and only
if one can go from one to the other using the Markov moves I and II:

α

β

· · ·

· · ·

!

Markov I

β

α

· · ·

· · ·

α

· · ·

· · ·

! !

Markov II

α

· · ·

· · ·

α

· · ·

· · ·

fintely many times.

Braids are oriented upward and are closed on the right.
We denote by A the annulus {x ∈ R2|1 < ‖x‖ < 2} and for all x = ( x1

x2

)
in A , we

denote by tx the vector
(−x2

x1

)
. A ray in R2 is a half-line which starts at O, the origin

of R2.

Definition 4.4. A vinyl graph is the image of an abstract closed MOY graph Γ in A

by a smooth embedding such that for every point x in the image of Γ, the tangent
vector at this point has a positive scalar product with tx. The set of vinyl graphs
is denoted by V . We define the level of a vinyl graph to be the rotational of the
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underlying MOY graph. If k is a non-negative integer.Vinyl graphs are regarded up
to ambient isotopy preserving A .

Example 4.5. The following vinyl graph has index 7.

1

6

4

2 3

4
1

5

2

2

1 1

5

1

2

Denote Vk the Z
[
q, q−1]

-module generated by vinyl graphs of index k and modded
out by the following relation (and their mirror images):〈

a+b

ba

〉
=

[
a+b

a

]〈
a+b

〉
,

〈
a+b+ c

a b c 〉
=

〈
a+b+ c

cba 〉
,

〈
a

a

b

b

1

1 〉
=

〈
b

b

a

a

1

1 〉
+ [b−a]

〈
a b

〉
.

Theorem 4.6 (Queffelec-Rose algorithm [QRS18, QR18]). The Z
[
q, q−1]

-moduel Vk

is free with a basis given the Sk with k = (k1, . . . ,k`), k1 ≥ k2 ≥ ·· · ≥ k` and
∑`

i=1 ki = k,
where

Sk = k1 . . . k`

The single circle Sk will play a peculiar role in what follows.
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Lemma 4.7 (Tree lemma). Suppose that Γ is an upward oriented MOY graph with
boundary from k to k. Then using only relations:〈

a+b

ba

〉
=

[
a+b

a

]〈
a+b

〉
,

〈
a+b+ c

a b c 〉
=

〈
a+b+ c

cba 〉
,

Then Γ= P(q)T in the appropriate skein module with T a tree and P(q) ∈Z≥0
[
q, q−1]

.
Moreover in this skein module, all trees are equal.

Sketch of the proof. Induction on the number of merge vertices in the graph. The
fact that all trees are equal is trivial. �

Definition 4.8. A foam F in A ×[0,1] with vinyl graph boundaries, is vinyl if for any
point (x, t) ∈ F, the scalar product of the unit normal vector of F at (x, t) with (x,0) is
strictly positive. In other words, all oriented sub-surfaces6 are annuli for which the
projection on the last coordinate is a Morse function without critical point.

Vinyl Foams have a well-defined index. For any index k form the non-full sub-
category of Foam whose objects are vinyl graphs of index k and morphisms are vinyl
foams of index k. It is denoted VFoamk.

From the Tree Lemma, we obtain:

Lemma 4.9. Let F : Sk →Sk be a vinyl foam. Then there exists a unique symmetric
polynomial P(F) ∈Z[Y1, . . .Yk], such that

FN (F)=FN

 P(F)

k

 .

Actually P(F) = τk(F̂), where F̂ is the foam obtained by gluing the two boundary
component of F together.

We will now define an evaluation of vinyl (Sk,Sk)-foams. This will then play a
role analogous to τN . Remember that N is a fixed positive integer.

Definition 4.10. Let F : Sk →Sk be a vinyl foam. The Nth symmetric evaluation of
F is the integer σN (F) defined as the coefficient of (Y1 · · ·Yk)N−1 in the expansion of
P(F) in the monomial basis.

For Γ a vinyl graph, define the graded vector space

VN (Γ) := ⊕
F : Sk→Γ

qdk(F)−k(N−1)Q.

6By subsurface, we mean union of 2-cells with their orientations, which forms a properly embedded ori-
ented surface in A .
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and a bilinear form ((·; ·)) on the base given by vinyl foam by:

((F;G)) :=σN (F ◦G).

Finally define
SN (Γ) := VN (Γ)

/
ker((·; ·)).

As before, SN defines a functor from the category of vinyl foam of index k to
the category graded vector spaces. Taking direct sum of categories and functors for
indexes in Z≥0, we get a functor from the category of vinyl foams to the category of
graded Q-vector spaces.

Proposition 4.11. The functor SN satisfies the following local relations (and their
mirror images):

(40) FN


a+b

ba

'
[

a+b
a

]
FN


a+b

 ,

(41) FN


a+b+ c

a b c
=FN


a+b+ c

cba
 ,

(42) FN


a

a

b

b

1

1

=FN


b

b

a

a

1

1

+ [b−a]FN


a b

 .

and the isomorphisms are realized by images by SN of local foams.

Proof. The same foam as for FN realizes the same isomorphisms: everything boils
down to local relations satisfied by τk. �

Proposition 4.12. The functor SN is monoidal (for concentric dijoint union) and we
have

(43) FN

(
k

)
'

[
N +k−1

k

]
Q.

Idea of proofs. The monoidality comes from the fact that coefficient of (x1 · · ·xk1 xk1+1 · · ·xk1+k2 )N−1

should come from product of coefficient of (x1 · · ·xk1 )N−1 and (xk1+1 · · ·xk1+k2 )N−1.
A basis of SN (Sk) is given by symmetric monomials “smaller” than (x1 · · ·xk)N−1

for an appropriate order. �

Corollary 4.13. The functor SN categorifies the symmetric MOY calculus restricted
to vinyl graphs.

Theorem 4.14. Using the same homological trick to deal with crossing one can ex-
tend this categorification to knotted vinyl diagrams and obtain an homological in-
variant of colored framed links. It can be renormalized to be insensitive to framing.

Idea of the proof. The fact that we obtain an invariant of colored braid closure is a
consequence of that for FN . Invariance by Markov II (that is Reidemeister I) relies
(for the moment) to a connection with triply graded homology and is very difficult.
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The problem being that we do not have a categorification of the bad digon relation
(35). It would be nice to have a combinatorial proof of invariance �

Interestingly, the homology for N = 1 is far from being trivial, although it cat-
egorifies the invariant which is constant equal to 1. For N = 2, the homology is
different from Khovanov homology (and from odd Khovanov homology) although it
categorifies the Jones polynomial.

4.3. Planar approach. The aim of this last part is to recast what was presented
in section 4.2 in a foam free language and using only vinyl graph. This is possible
because as stated in next lemma, vinyl foams from Sk to Γ can be described in a very
simple manner. Before stating this lemma, we need a definition:

Definition 4.15. Let F,G : Sk →Γ be two (formal linear combination of) vinyl foams.
Then F and G are ∞-equivalent if for all N ∈Z≥0, FN (F)=FN (G).

Lemma 4.16. Let F : Sk → Γ be a vinyl foam, then it is ∞-equivalent to a linear
combination of tree-like7 vinyl foams with decoration only on the top. Two tree-like
foams from Sk to Γ with same decoration (and only the top) are ∞-equivalent.

Idea of the proof. The first part is a consequence of the tree lemma and of the fact
that FN categorifies nicely the digon and (co)associatity relations. �

The previous lemma says that the only relevant information about foams from Sk

to Γ can be stored as a “decoration” of the vinyl graph Γ.

Definition 4.17. A decoration P = (Pe)e∈E(Γ) is a collection of polynomials indexed by
edges of Γ, such that for each edge e, Pe is a symmetric polynomial in `(e) variables.
The vector space generated by decorations is denoted D(Γ). This space has an algebra
structure which comes from the structures of the polynomial algebras used to define
it.

Definition 4.18. An omni-coloring of a vinyl graph of index k is a glk-coloring (see
Lecture 1) of Γ such that every element of JkK is indeed used. In other words, it is a
collection of k oriented cycles in Γ which covers all edges with the multiplicity given
by the thickness. The set of omnicoloring of Γ is denoted ocol(Γ).

For an omnicoloring c and a decoration P of a vinyl graph Γ, define

σ∞(P, c)=

∏
e∈E(Γ)

Pe(X c(e))∏
v∈Vsplit(V )

∏
i∈c(e l (v))
j∈c(er(v))

(xi − x j)
.

This definition is designed so that

σ∞(F)= ∑
c∈ocol(Γ)

σ∞(P, c)

is equal to τk(F) where F is the concatenation of a tree-like foam with decoration on
top given by P with a tree-like foam from Γ to Sk and with the two Sk glued onto
each others.

7A tree-like foam vinyl foam is a vinyl foam for which every vertical slice is a tree.
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Lemma 4.19. The rational fraction
∑

c∈ocol(Γ)σ∞(P, c) is a symmetric polynomial in
k variables.

Exercise 4.20. Workout the degree of an homogeneous decoration to match that of
the corresponding tree-like foam (one can also look at the evaluation formula to get
inspiration).

Finally define σN (P) to be the coefficient of (x1 · · ·xk)N−1 in the expansion of σ∞(P)
in the monomial basis. We can now endow D(Γ) given by the following bilinear form
(P;Q)=σN (PQ).

Proposition 4.21. The graded vector space D(Γ)/ker(; ) is naturally isomorphic to
SN (Γ).

Of course with this setup it is not so easy to see morphism between vinyl graphs.
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