Exercice 1. On munit M de la topologie la plus fine possible telle que les deux application $\phi_i : \mathbb{R} \to M$ (i = 1, 2) soit continue. C'est à dire : $O \subseteq M$ est ouvert si et seulement si $\phi_i^{-1}(O)$ est ouvert.

Montrons que M munie de cette topologie est non-séparée. Si x est un élément de $[0, +\infty[$, on note x_i (i = 1, 2) la copie de x_i dans A_i , soit O_1 un ouvert contenant O_1 et O_2 un ouvert contenant O_2 . On va montrer que leur intersection est nécessairement non-vide.

Par définition de la topologie de M, $\phi_i^{-1}(O_i)$ contient un intervalle $]-\epsilon_i, \epsilon_i[$ pour un $\epsilon_i > 0$. Quitte à choisir $\epsilon'_1 = \epsilon'_2 = \min(\epsilon_1, \epsilon_2)$, on peut supposer que $\epsilon_1 = \epsilon_2 =: \epsilon$. Ainsi $\frac{-\epsilon}{2}$ est dans $\phi_1^{-1}(O_1) \cap \phi_2^{-1}(O_2)$, et donc $\frac{-\epsilon}{2}$ est dans $O_1 \cap O_2$.

Pour voir que M est une variété ¹. On se convainc aisément que $(]-\infty, 0[\cup A_i, \phi_i)_{i=1,2}$ est un atlas.

Exercice 2. Petit rappel sur les espaces tangents. Si $M = (U_i \varphi_i)_{i \in I}$ est une variété de dimension n, l'espace tangent en un point p de M comme :

$$T_p M = \prod_{i \in I(p)} \mathbb{R}^n \times \{i\} / \sim$$

avec I(p) le sous ensemble de I contenant les indices i tel que $p \in U_i$ et $(x,i) \sim (y,j)$ si et seulement si $d(\varphi_j \circ \varphi_i^{-1})_p(x) = y$. Ainsi si on fixe un indice i_0 , comme toute les applications $\varphi_j \circ \varphi_i^{-1}$ sont des isomorphismes, on peut identifier chaque élément de T_pM avec un élément de la forme (x,i_0) : pour tout i_0 , chaque classe d'équivalence contient exactment un point de la forme (x,i_0) . Ainsi T_pM est isomorphe comme ensemble à \mathbb{R}^n , de plus on peut montrer que la structure d'espace vectoriel de T_pM est compatible avec cette bijection. Donc $T_pM \simeq \mathbb{R}^n$ comme espace vectoriel.

Ceci nous permet de lire les différentielles d'application entre variété dans les cartes.

On peut lire les différentes différentielles dans des cartes : Soit p un point de M, (U_{i_0}, φ_{i_0}) une carte de M contenant p, (V_{j_0}, ψ_{j_0}) une carte de N contenant f(p) et (W_{k_0}, ξ_{k_0}) une carte de P contenant $g \circ f(p)$, on a

$$(\mathrm{d}f)_{p} \colon T_{p}M \to T_{f(p)}N$$

$$[(x,i_{0})] \mapsto \left[\left(\mathrm{d}\left(\psi_{j_{0}} \circ f \circ \varphi_{i_{0}}^{-1}\right)_{\varphi_{i_{0}}(p)}(x), j_{0}\right) \right],$$

$$(\mathrm{d}g)_{f(p)} \colon T_{f(p)}pM \to T_{g \circ f(p)}N$$

$$[(y,j_{0})] \mapsto \left[\left(\mathrm{d}\left(\xi_{k_{0}} \circ g \circ \psi_{j_{0}}^{-1}\right)_{\psi_{j_{0}}(f(p))}(y), k_{0}\right) \right) \right]$$

et

$$(dg \circ f)_p : T_p M \to T_{g \circ f(p)} N$$

$$[(x, i_0)] \mapsto \left[\left(d \left(\xi_{k_0} \circ g \circ \varphi_{k_0}^{-1} \right)_{\varphi_{i_0}(p)} (x), k_0 \right) \right].$$

On calcule:

$$(\mathrm{d}g)_{f(p)} \circ (\mathrm{d}f)_{p}([x,i_{0}]) = \left[\left(\left(\mathrm{d} \left(\xi_{k_{0}} \circ g \circ \psi_{j_{0}}^{-1} \right)_{\psi_{j_{0}}(f(p))} \right) \circ \left(\mathrm{d} \left(\psi_{j_{0}} \circ f \circ \varphi_{i_{0}}^{-1} \right)_{\varphi_{i_{0}}(p)} \right) (x), k_{0}) \right) \right]$$

$$= \left[\left(\mathrm{d} \left(\xi_{k_{0}} \circ g \circ \psi_{j_{0}}^{-1} \circ \psi_{j_{0}} \circ f \circ \varphi_{i_{0}}^{-1} \right)_{\varphi_{i_{0}}(p)} (x), k_{0}) \right) \right]$$

$$= \left[\left(\mathrm{d} \left(\xi_{k_{0}} \circ g \circ f \circ \varphi_{i_{0}}^{-1} \right)_{\varphi_{i_{0}}(p)} (x), k_{0}) \right) \right] = (\mathrm{d}g \circ f)_{p} \left([(x, i_{0})] \right)$$

^{1.} On demande normalement que l'espace sous-jacent soit séparé, mais on s'abstrait de cette contrainte dans cet exercice.

Exercice 3. (1) V est considéré comme une variété avec un atlas donné par $\{(V, \mathrm{id}_V)\} = \{U_1, \varphi_1\}$. Ainsi, $T_pV = V \times \{1\}$ et donc $T_pV \simeq V$ trivialement.

(2) Il nous faut d'abord comprendre comment sont données les cartes pour une sous-variété M de dimension k dans \mathbb{R}^n . Elles viennent de la définition de sous-variété. En effet pour tout point p on peut trouver un ouvert U de \mathbb{R}^n le contenant et une application $\varphi: U \to \mathbb{R}^n$ qui est un difféomorphisme sur son image telle que :

$$\varphi(U \cap M) = \mathbb{R}^k \times \{0_{\mathbb{R}^{n-k}}\} \cap \varphi(U).$$

Si on compose φ avec $\pi_k: \mathbb{R}^n \to \mathbb{R}^k$, la projection sur le k première coordonnées, on obtient : une application $\widetilde{\varphi} = \pi_k \circ \varphi_{U \cap M}$. Cette application est bien un homéomorphisme car :

- elle est bijective, car φ est bijective,
- elle est d'inverse continue car son inverse est la restriction à $\mathbb{R}^k \times \{0_{\mathbb{R}^{n-k}}\} \cap \varphi(U)$ d'une application continue.

La compatibilité entre les différentes cartes données par cette méthode (i. e. le caractère lisse des changements de cartes) est donnée par le fait que les applications φ sont en fait lisses.

On considère donc une sous-variété M de \mathbb{R}^n en un point p. Et l'application

$$(\mathrm{d}\iota)_p:T_pM\to T_p\mathbb{R}^n\simeq\mathbb{R}^n$$

On veut montrer que cette application est injective. On se donne (U, φ) comme précédemment. Notons que (U, φ) est une carte de \mathbb{R}^n en p. Ainsi, en lisant dans les cartes φ et $\widetilde{\varphi}$, on a :

$$(\mathrm{d}\iota)_p = \mathrm{d}(\varphi \circ \iota \circ \widetilde{\varphi}^{-1})_p$$

Notons que pour tout $x = (x_1, \ldots, x_k)$ dans \mathbb{R}^k , on a : $\varphi \circ \iota \circ \widetilde{\varphi}^{-1}(x) = (x_1, \ldots, x_k, 0, \ldots, 0)$. En particulier, $\varphi \circ \iota \circ \widetilde{\varphi}^{-1}$ est linéaire et $(d\iota)_p$ est l'injection \mathbb{R}^k dans $\mathbb{R}^n \simeq T_p\mathbb{R}^n$.

(3) A est un espace affine de direction W. On considère $\psi: V \simeq \mathbb{R}^n$ tel que $\psi(W) = \mathbb{R}^k \times \{0\}$ et $\xi: \mathbb{R}^k \to V$ telle que $\xi \circ \psi_{|W} = \mathrm{id}_W$. Soit p un élément de A. On a :

$$\{b-p|b\in A\}\simeq W$$

Soit p un point, on l'application

$$\varphi \colon \quad V \quad \to \quad V \\ x \quad \mapsto \quad \psi(x-p)$$

Ainsi φ induit une carte $\widetilde{\varphi}$. On a :

$$T_p M \simeq \mathbb{R}^k \times \{\psi\} \stackrel{\xi}{\simeq} W.$$

On se convainc aisément qu'un autre choix de ψ , donne le même isomorphisme.

- (4) C'est un cas particulier de la question (2).
- (5) C'est clair : en effet, on peut lire la différentielle (issue de la théorie des variétés) de f a l'aide des carte $i_{U\to\mathbb{R}^n}$ et $\mathrm{id}_{\mathbb{R}^n}$, on a donc :

$$(\mathrm{d}_{\mathrm{vari\acute{e}t\acute{e}}}f)_p = (\mathrm{d}(\mathrm{id}_{\mathbb{R}^n} \circ f \circ i_{U \to \mathbb{R}^n}))_p$$
$$= (\mathrm{did}_{\mathbb{R}^n})_{f(i_{U \to \mathbb{R}^n}(p))} \circ (\mathrm{d}f)_{i_{U \to \mathbb{R}^n}(p)} \circ (\mathrm{d}i_{U \to \mathbb{R}^n})_p \qquad (\mathrm{d}f)_p$$