
TRISECTIONS I: EXISTENCE AND EXAMPLES

ANTHONY SAINT-CRIQ

Manifolds will be smooth, compact, connected and oriented. Trisections of
(closed) 4-manifolds, due to Gay and Kirby [GK16], are a great way to encode
the 4-dimensional properties into a simple diagrammatic setting, and in many re-
gards, they are a generalization of these decompositions to the dimension above.

1. Definition and examples

We define an n-dimensional 1-handlebody of genus k to be Zk
∼= ♮k(S1 × D3),

and we set Z0 = D4. Similarly, a 3-dimensional 1-handlebody of genus g is Yg
∼=

♮g(S1 × D2). Σg will denote the closed surface of genus g, with ∂Yg
∼= Σg.

Definition 1. A trisection of a closed 4-manifold X is a decomposition X =
X1 ∪ X2 ∪ X3 into three embedded sumbanifolds X1, X2, X3 such that:

(1) Xi
∼= Zki for i ∈ {1, 2, 3}.

(2) Hij := Xi ∩ Xj
∼= Yg for i ̸= j ∈ {1, 2, 3}.

(3) Σ := X1 ∩ X2 ∩ X3 ∼= Σg.

The pieces X1, X2 and X3 are called the sectors of the trisection, and Σ is the
trisecting surface. The genus of the trisection is that of Σ, and we say that this
decomposition is a trisection of type (g; k1, k2, k3).

The schematic way to represent a trisection is shown in Figure 1.
We can make the following observations:

(1) ∂X1 = H12 ∪ H13 is a Heegaard splitting of genus g, and the associated
Heegaard surface Σ.
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Figure 1. The cartoon picture of a trisection.
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(2) ∂X1 ∼= #k1(S1 × S2). Therefore k1 ⩽ g.
(3) The Waldhausen theorem asserts that #k1(S1 × S2) admits a unique Hee-

gaard splitting of genus g ⩾ k1, up to isotopy.

These observations, which can also be made for ∂X2 and ∂X3, already imply
some restrictions on the different pieces of the trisection.

One can also make use of the Inclusion-Exclusion principle, and read:

χ(X) = 2 + g − (k1 + k2 + k3). (1)

The very first example is that of S4. Consider that S4 ⊂ C × R3, and cut C
into three sectors almost like in Figure 1:

Ri := {reiθ ∈ C | 2iπ/3 ⩽ θ ⩽ 2(i + 1)π/3}, i ∈ {1, 2, 3}.

Then, set Xi = p−1(Ri), where p : S4 → C is the projection onto the first factor.
It is an immediate verification to see that S4 = X1 ∪ X2 ∪ X3, and that:

(1) Xi
∼= D4 ∼= Z0.

(2) Xi ∩ Xj
∼= D3 ∼= Y3.

(3) X1 ∩ X2 ∩ X3 ∼= S2.

Therefore, this decomposition of S4 is a genus zero trisection, and it has type
(0; 0, 0, 0).

One can also build a trisection of S1×S3 in the same fashion: embed S3 ⊂ C×R2,
and consider this time the map p : S1 ×S3 → C that projects onto the C-coordinate
in the S3 factor. Set Xi = p−1(Ri) just as before. This time, we see that:

(1) Xi
∼= S1 × D3.

(2) Xi ∩ Xj
∼= S1 × D2.

(3) X1 ∩ X2 ∩ X3 ∼= T2.

The trisection has genus one, and type (1; 1, 1, 1).
Given a trisected closed 4-manifold X = X1 ∪ X2 ∪ X3, define the spine of the

trisection to be the union
Y = H12 ∪ H13 ∪ H23.

We will use the following theorem from [LP72]:

Theorem 2 (Laudenbach–Poénaru). Any diffeomorphism of #k(S1 × S2) extends
to ♮k(S1 × D3).

In particular, given a 2-handlebody (a union of 0-, 1- and 2-handles), there is a
unique way to cap it off into a closed 4-manifold. Moreover, to go from the spine Y
to the whole manifold X, it reduces to attaching such 3- and 4-handles. As such,
we have the following:

Corollary 3. A spine uniquely determines a trisected 4-manifold (up to isotopy).

Here, the uniqueness is up to equivalence of trisections, which consists in a diffeo-
morphism of trisected manifolds that maps each piece of one to the corresponding
piece of the other.

Now, any handlebody Hij can be uniquely described by a cut system, formed of
meridian disks. Denote as Dij such a choice of a system for Hij , and set α = ∂D13,
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β = ∂D12 and γ = ∂D23. Note that α, β and γ are three sets of g curves that live
on the trisecting surface Σ.

The data (Σ; α, β, γ) is sufficient to recover a unique trisected 4-manifold, by
the previous observations. Note that any choice of a pair of curves determines
a Heegaard diagram for the boundary of the corresponding sector. For instance,
(Σ; α, β) is a Heegaard diagram for ∂X1.

Any two choices of diagrams for isotopic trisection of the same 4-manifold are
related by a sequence of handle slides, which translate to sliding the curves on the
diagrams. This operation consists of:

(1) Take two distinct curves (in the same system), say α1 and α2.
(2) Join them by an arc δ.
(3) Consider a regular neighborhood of α1 ∪ δ ∪ α2 on the surface Σ. It has

three components, one of which is not isotopic to either α1 or α2.
(4) Keeping α2, replace α1 with that third component.

The procedure is depicted in Figure 2.

α1 α2

α′
1

δ

Figure 2. Sliding the α1 curve over the α2 curve by means of the arc
δ to obtain a new curve α′

1.

We say that two diagrams are equivalent if they are related by a sequence of
curve sliding and by a diffeomorphism of the surface. Again, we are only allowed
to slide α-curves with α-curves, and the same for β and γ curves.

Waldhausen’s theorem translates to saying that any Heegaard diagram of genus
g ⩾ k for #k(S1 × S2) is curve-slide equivalent that of Figure 3:

We therefore define:

. . .. . .

k g − k

Figure 3. The standard genus g Heegaard diagram for #k(S1 × S2).
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Definition 4. A trisection diagram is a tuple (Σg; α, β, γ) where α, β and γ are
sets of g curves on Σg, and such that any pair of curves (Σg; α, β), (Σg; α, γ) and
(Σg; β, γ) is curve-slide equivalent to that of Figure 3 for some k.

By the previous observations, such a diagram uniquely determines a trisected
4-manifold, and conversely, a trisected 4-manifold determines a unique diagram, up
to equivalence. That is:

diagrams/equivalence ∼ trisections/isotopy.

The diagrams for the two trisections of S4 and S1 × S3 are as in Figure 4.

(a) (b) (c)

(d)

Figure 4. (a) The (0; 0, 0, 0) trisection of S4. (b) The (1; 1, 1, 1)
trisection of S1 × S3. (c) A (1; 0, 0, 0) trisection diagram for CP2. (d)
A (2; 0, 0, 0) trisection of S2 × S2.

2. Around a Proof of Existence

We show the following:

Theorem 5. Any closed 4-manifold admits a trisection.

Proof. Consider a self-indexing Morse function f on X; that is, f : X → R is Morse
and the index i critical points are on the level f−1(i). Let ki denote the number of
index i critical points. Without loss of generality, we can assume that k0 = k4 = 1.

Denote as L the k2-component link that is the attachment link for the 2-handles.
We can assume that L lives inside f−1(3/2). Consider an open regular neighborhood
ν(L) of L inside f−1(3/2), and pick a relative handle decomposition of f−1(3/2)∖
ν(L) which consists only of 1-, 2- and 3-handles. Let H1 be the union of the 2-
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and 3-handles, and let H2 be ν(L) together with the 1-handles. Then H1 and H2
are both handlebodies which meet along some central surface Σ of genus g. This
means that f−1(3/2) = H1 ∪Σ H2 is a genus g Heegaard splitting.

L lies completely in H2, by construction. Therefore, we can flow along a gradient-
like vector field for f , and consider the cylinder H1 × [3/2, 5/2]. Define: X1 =
f−1([0, 3/2]) ∪ H1 × [3/2, 2], X3 = f−1(5/2, 4) ∪ H1 × [2, 5/2]. Finally, define X2 to
be the complement X2 = X ∖ [

◦
X1 ∪

◦
X3]. Then, X1 is a genus k1 handlebody, and

X3 is a genus k3 handlebody.
Finally, X2 is diffeomorphic to H2 × I ∪ {2-handles}, where H2 × I is a genus g

handlebody obtained from ν(L) by attaching some 1-handles, and the 2-handles are
attached along L so they cancel uniquely k2 1-handles. Therefore, X2 is diffeomorhic
to a genus g − k2 handlebody.

The intersections are as follows: X1 ∩X2 = H2, X2 ∩X3 = H1 and X1 ∩X3 is the
result of surgery on H2 along the link L ⊂

◦
H2. All three are genus g 3-dimensional

handlebodies, and the triple intersection is Σ. ■

Note that we started with a handle decomposition with a unique 0- and a unique
4-handle, and ki i-handles, and we constructed a (g; k1, g −k2, k3)-trisection, where
g was a sufficiently large genus of a Heegaard splitting of ∂X1. The converse is also
true:

Proposition 6. If X admits a (g; k1, k2, k3)-trisection, then X admits a handle
decomposition with k1 1-handles, g − k2 2-handles and k3 3-handles.

In particular, we see that if X has a (g; k1, k2, k3)-trisection, then:

(1) k1, k2, k3 ⩾ rk(π1(X)). In particular, from χ(X) = 2 + g − (k1 + k2 + k3),
we obtain:

g ⩾ χ(X) − 2 + 3rk(π1(X)).
(2) If one of the ki = 0, then X is simply-connected.
(3) If k1 = k2 = k3 = g, then X has a handle decomposition with no 2-

handles, and as many 1- and 3-handles. Then, by [LP72] again, we get that
X ∼= #g(S1 × S3).

3. Stabilization Moves and Uniqueness

There is a way to “merge” two trisections together: taking their connected sum1

(that is, it corresponds to taking the connected sum of each corresponding piece
of both trisections). A trisection that can be split as the connected sum of two
smaller ones is called reducible.

On the diagrams, it really corresponds to taking the connected sum of both
diagrams. This means that, for instance, #g(S1 × S3) has a (g; g, g, g)-trisection,
with a diagram given in Figure 5.

There is a special kind of trisection: a stabilized one. Stabilization is the
following operation: consider an arc a12 ⊂ H12 boundary parallel. Consider an

1The choice of the ball on which to take connected sums is important, but I am omitting the
details here.
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g

. . .

Figure 5. A trisection diagram for #g(S1 × S3).

open regular neighborhood ν(a12) of a12 in X. Then, define:

X ′
1 = X1 ∖ ν(a12), X ′

2 = X2 ∖ ν(a12) and X ′
3 = X3 ∪ ν(a12).

The decomposition X = X ′
1∪X ′

2∪X ′
3 is a new stabilization of X, not isotopic to the

first one, called the 3-stabilization. We define 1- and 2-stabilizations similarly.
The situation is depicted in Figure 6.

a12

Σ

X1

X2

X3

X

Figure 6. The operation of 3-stabilizing a trisection.

If the starting trisection of X had type (g; k1, k2, k3), then the 3-stabilized one
has type (g + 1; k1, k2, k3 + 1). Similar results hold for 1- and 2-stabilizations too.

We claim:

Proposition 7. Given a trisection, the result of i-stabilization and then j-stabilization
is isotopic to that of a j-stabilization and then an i-stabilization.

Just like the Reidemeister–Singer theorem holds for Heegaard splittings, we have
the following for trisections, due to [GK16]:

Theorem 8 (Gay–Kirby). Any two trisections of the same manifold become iso-
topic after a certain number of stabilizations of each.

4. Connections with Kirby Diagrams

We can always place the whole trisection diagram in standard red/blue position.
That is: the α and β curves are as in Figure 3, and the green curves get moved along



TRISECTIONS I: EXISTENCE AND EXAMPLES 7

Figure 7. A trisection diagram for S2 × S2 in standard red/blue
position.

in some position. For instance, all the diagrams in Figure 4 but that of S2 × S2 are
in standard position. A standard diagram for it would be that of Figure 7.

Now, in the associated handle decomposition to a trisection, recall that X1 was
the union of the 0- and the 1-handles. This X1 is obtained by the α and β curves.
The 2-handles are attached along the γ curves, and the 3- and 4-handles are uniquely
attached to that. This means that we can pass from a trisection diagram to a Kirby
diagram by the following procedure:

(1) Put the diagram into standard position.
(2) Draw a 1-handle for each parallel pair of α and β curves. Remove the dual

α and β curves.
(3) Each γ curve becomes a framed link for a 2-handle, with framing induced

by the surface.

We can compute a Kirby diagram from the previous examples, see Figure 8.

=
0

(a)

=
+1

(b)

0
0

(c)

Figure 8. Obtaining a Kirby diagram from a trisection diagram for
(a) S1 × S3, (b) CP2 and (c) S2 × S2.

The other way is slightly more subtle: how to go from a Kirby diagram to a
trisection diagram? The algorithm, presented (and proved) in [Kep21], goes as
follows:

(1) Start with a Kirby diagram. Draw all 1-handles as dotted circles.
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(2) Choose a meridian circle to all 1-handles, and connect those to form a wedge
of circles.

(3) Thicken this wedge into a surface, so that all 1-handle circles are meridian
curves on that surface.

(4) Replace each 1-handle circle with a parallel pair of red/blue curves.
(5) Consider the framed link L of the attachment of the 2-handles. This can

be pushed on the surface, but it will have crossings. Stabilize the surface
enough so that this does not happen. When doing so, add a dual pair
of red/blue curve. The projection of the link on the surface should have
framing induced by that surface.

(6) The projection of this link is the set of green curves.
The procedure at steps (2) and (5) are detailed in Figure 9.

(a) (b)

Figure 9. (a) Transforming the circles of the 1-handles into a surface.
(b) Resolving crossings on the projection of L on the surface.

For examples of computation, Figure 8 can simply be read in reverse, and each
Kirby diagram induces the corresponding trisection diagram. However, for wilder
Kirby diagrams, this can become very messy...2
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