Série 2 – Correction

Exercice 1. Donner la définition d'une fonction lisse de classe C^{∞} en termes vectoriels.

Correction: La notion de continuité d'une fonction vectoriel ne pose pas de problème. Si $f:[a,b] \to \mathbb{R}^n$ est une fonction, on dit qu'elle est dérivable en t_0 si il existe un vecteur $v \in \mathbb{R}^n$ tel que

$$f(t_0 + h) = f(t_0) + hv + o(h).$$

Dans ce cas le vecteur v est noté $f'(t_0)$. La fonction f est dérivable si elle est dérivable en t pour tout t de [a,b]. On définit alors la fonction dérivée de f comme l'application $f':[a,b]\ni t\mapsto f'(t)\in\mathbb{R}^n$.

- Une fonction vectoriel f est de classe C^0 si elle est continue.
- Pour $k \ge 1$, une fonction vectoriel f est de classe C^k si elle est dérivable et que sa fonction dérivée est de classe C^{k-1} .
- Une fonction f est de classe C^{∞} si elle est de classe C^k pour tout k dans \mathbb{N} .

Exercice 2. (1) Calculer l'hodographe des courbes suivantes :

(a) Le cercle unitaire C en \mathbb{R}^2 paramétré par $t \mapsto (\cos(at), \sin(at)), a \neq 0$. En déduire la dépendance de l'hodographe de la paramétrisation.

Correction: On rappelle que l'hodographe d'une courbe C paramétrée par γ est en fait la "courbe" paramétrée par les vitesses c'est à dire par γ' . Il est donc en particulier nécessaire que γ soit dérivable pour pouvoir parler d'hodographe. Si γ' est continue et injective, l'hodographe est une courbe élémentaire.

Il est facile d'assurer que γ' soit continue en requérant que γ soit de classe C^1 , en revanche l'injectivité de γ' est beaucoup plus difficile à assurer.

On commence par calculer les vecteurs vitesses. Ici on a $\gamma(t) = (\cos(at), \sin(at))$ et donc $\gamma'(t) = (-a\sin(at), a\cos(t))$. Ainsi l'hodographe de C est le cercle de rayon a. On constate que si a varie l'hodographe de la courbe C varie. Il dépend donc du paramétrage.

(b) L'hélice $H: t \mapsto (\cos(t), \sin(t), t)$.

Correction: Comme précédemment, on calcule le vecteur vitesse. Ici $\gamma(t) = (\cos(t), \sin(t), t)$, donc $\gamma'(t) = (-\sin(t), \cos(t), 1)$. L'hodographe de H est donc le cercle unité dans le plan horizontal d'équation z = 1.

(2) Trouver les tangentes à C et H en et (1,0) et (1,0,0).

Correction: On rappelle que la tangente à un point $p = \gamma(t)$ d'une courbe paramétrée C par γ est la droite affine de direction $\gamma'(t)$ qui passe par p. On reprend les paramétrage précédent

Pour le cercle : $(1,0) = \gamma(0)$ et on a $\gamma'(t) = (0,a)$. La tangente à (1,0) est donc la droite

$$D = \{(1,0) + \lambda(0,a) | pour \lambda \in \mathbb{R} \}$$

= \{(1,0) + \lambda(0,1) | pour \lambda \in \mathbb{R} \}.

On constate que D ne dépend donc pas de a.

<u>Pour l'hélice</u>: $(1,0,0) = \gamma(0)$ et on a $\gamma'(0) = (0,1,1)$ donc la tangente à (1,0) est la droite

$$D = \{(1,0,0) + \lambda(0,1,1) | \text{ pour } \lambda \in \mathbb{R}\}.$$

(3) Vérifier l'indépendance de ces tangentes de la paramétrisation.

Correction: Soient γ_1 et γ_2 deux paramétrisation régulière d'une même courbe élémentaire C. Soit p un point de C. On pose t_1 et t_2 tel que $\gamma_1(t_1) = \gamma_2(t_2) = p$. On va montrer que $\gamma'_1(t_1)$ et $\gamma'_2(t_2)$ sont colinéaires et non-nuls, on en déduira l'indépendance de la tangente.

On a vu la semaine dernière qu'il existait une difféomorphisme Φ tel que $\gamma_2=\gamma_1\circ\Phi$. En particulier on a $\Phi(t_2)=t_1$. On a

$$\gamma_2'(t_2) = \Phi'(t_2)\gamma_1'(\Phi(t_2)) = \Phi'(t_2)\gamma_1'(t_1).$$

Or on a vu aussi la semaine dernière que $\Phi'(t) \neq 0$ pour tout t. On en déduit que $\gamma_1'(t_1)$ et $\gamma_2'(t_2)$ sont colinéaires et non-nuls et engendre donc le même espace vectoriel V (de dimension 1).

Par défintion, la tangente au point p est la droite

$$D = \{ p + v | v \in V \}.$$

Ainsi la tangente ne dépend pas de la paramétrisation.

Exercice 3. Donner un exemple d'une courbe planaire $C \subset \mathbb{R}^2$ et d'une droite $L \subset \mathbb{R}^2$ telle que L est tangente à C en deux points différents.

Correction: Si la courbe C est un segment, la droite affine qui passe par ce segment, est la tangente en chacun des points de C, ce qui répond à la question. Mais ce n'est pas très jolie.

On construit donc une autre courbe C paramétrée par $\gamma:[0,4\pi]\ni t\mapsto (t,\sin(t))$. La droite D d'équation y=1, autrement décrite par

$$\begin{split} D &= \{(0,1) + \lambda(1,0) | \lambda \in \mathbb{R} \} \\ &= \{(0,\frac{\pi}{2}) + \lambda(1,0) | \lambda \in \mathbb{R} \} \\ &= \{(0,\frac{5\pi}{2}) + \lambda(1,0) | \lambda \in \mathbb{R} \}. \} \end{split}$$

Les deux dernières lignes rendent manifeste que D est tangente à la courbe en $(0, \frac{\pi}{2}) = \gamma(\frac{\pi}{2})$ $(0, \frac{5\pi}{2}) = \gamma(\frac{5\pi}{2})$, en effet, on a $\gamma'(\frac{\pi}{2}) = (1,0)$ et $\gamma'(\frac{5\pi}{2}) = (1,0)$.

Exercice 4. Démontrer que la longueur du "flocon de Koch" est infinie.

Correction: La longueur $\ell(C)$ d'une courbe C paramétrée par $\lambda:[a,b]\to\mathbb{R}^n$ est définie par la formule suivante :

$$\ell(C) = \sup_{N \in \mathbb{N}^*} \sup_{a = t_0 < t_1 < \dots < t_N = b} |\gamma(t_{i+1} - \gamma(t_i))|.$$

On va voir dans le cours une formule plus pratique à utiliser dans le cas où γ est lisse.

Le flocon de Koch K_{∞} est vu comme la limite (sans un sens qui n'est pour l'instant pas précis, mais qu'on pourrait préciser) d'une suite de courbe. La première courbe K_0 a longueur 1 et est un segment.

La nème courbe K_n (paramétrée par γ_n) est constitué de 4^n segments de même longueur. Chaque segment a longueur $\frac{1}{3^n}$. Elle a donc longueur $\frac{4^n}{3^n}$. Pour fabriquer la n+1ème courbe, on remplace chaque segment de K_n par une suite de 4 segment en suivant la règle suivante :

Chaque extrémité d'un segement de K_n reste une extrémité d'un segement de K_{n+1} ce point est donc dans la courbe limite.

en se servant de la définition de la longueur on obtient, en prenant $N=4^n$ et en choisisant les t_i de tel manière à ce que les $\gamma_n(t_i)$ soit précisément les extrémités des segments qui constituent K_n on obtient :

$$\ell(K_{\infty}) \ge \sum_{i=1}^{4^n} |\gamma_n(t_i) - \gamma_n(t_{i-1})| = \ell(K_n) = \frac{4^n}{3^n}$$

et donc la longeur de K_{∞} est infinie.

Exercice 5. Calculer $\int_{-1}^{1} \sqrt{1 + (f'(x))^2}$ pour $f(x) = \sqrt{1 - x^2}$. Vérifier que le résultat coïncide avec la longueur du demi-cercle.

Correction: On commence par calculer la dérivée de f: f est dérivable sur (-1,1) et :

$$f'(x) = \frac{-x}{\sqrt{1 - x^2}}.$$

On a donc pour tout x dans (-1,1)

$$\sqrt{1 + f'(x)^2} = \frac{1}{\sqrt{1 - x^2}}.$$

Il s'agit donc d'intégrer cette fonction. On a :

$$\int_{-1}^{1} \frac{1}{\sqrt{1-x^2}} dx = \arcsin(1) - \arcsin(-1) = \frac{\pi}{2} - \frac{-\pi}{2} = \pi.$$

On constate qu'il s'agit aussi de la longueur d'un demi-cercle. En fait ceci vient du fait que pour une paramétrisation régulière $\gamma:[a,b]\to\mathbb{R}^2$ d'une courbe C, on a :

$$\ell(C) = \int_a^b ||\gamma'(t)||_2 t.$$

Cette formule sera montré dans le cours.

Ici on a utilisé $\gamma: [-1,1] \ni x \mapsto (x,\sqrt{1-x^2}) \in \mathbb{R}^2$ qui décrit le demi-cercle.