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Braids

0. Introduction

Classical braid group can be defined as the fundamental group of
configuration space or as the mapping class group of a disc with n

punctures. Being a natural object, braids admit generalizations in
various directions. Also there are special types of braids defined
among all braids by specific properties.
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1. Configuration spaces

1. Configuration spaces and braids on manifolds

To fix notations let us make the following definitions.
Let M be a topological manifold. Symmetric group Σn acts on the
Cartesian power Mn of M by the standard formula

w(y1, ..., yn) = (yw(1), ..., yw(n)), w ∈ Σn. (1)
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We denote by F (M, n) the space of n-tuples of pairwise different
points in M:

F (M, n) = {(p1, ..., pn) ∈ Mn : pi 6= pj for i 6= j}.

It is called sometimes as ordered configuration space of n points on
M.
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The orbit space of this action B(M, n) = F (M, n)/Σn is the
(unordered) configuration space of n points on M. The braid group
of the manifold M Brn(M) is the fundamental group of
configuration space

Brn(M) = π1(B(M, n)).
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The fundamental group of the ordered configuration space is called
the pure (or colored) braid group of the manifold M

Pn(M) = π1(F (M, n)).
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The free action of Σn on F (M, n) and the projection

p : F (M, n) → F (M, n)/Σn = B(M, n)

defines a covering. The initial segment of the long exact sequence
of this covering is as follows:

1 → Pn(M)
p∗
→ Brn(M) → Σn → 1. (2)
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The canonical example is M = R
2, so F (R2, n) and B(R2, n) are

the configuration spaces (ordered and unordered) of n points on a
plane.
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2. Artin presentation for braid group

Artin presentation of the braid group Brn has generators σi ,
i = 1, ..., n − 1 and relations:

{
σiσj = σj σi , if |i − j | > 1,

σiσi+1σi = σi+1σiσi+1
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3. Presentaion of the pure braid group of a disc

Define the elements ai ,j , 1 ≤ i < j ≤ n, of Brn by:

ai ,j = σj−1...σi+1σ
2

i σ
−1

i+1
...σ−1

j−1
.
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Geometrically generator of this type is depicted as follows

✟✟

✟

✟
✟✟

❍
❍❍

❍❍

✟
✟
❍
❍
❍
❍

1 2 j − 1 j n

... ...

Figure: Generator a1,j
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They satisfy the Burau relations:

ai ,jak,l = ak,lai ,j for i < j < k < l and i < k < l < j ,

ai ,jai ,kaj ,k = ai ,kaj ,kai ,j for i < j < k ,

ai ,kaj ,kai ,j = aj ,kai ,jai ,k for i < j < k ,

ai ,kaj ,kaj ,la
−1

j ,k = aj ,kaj ,la
−1

j ,k ai ,k for i < j < k < l .

(3)

W. Burau proved that this gives a presentation of the pure braid
group Pn.
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Homotopy braids

4. Homotopy braids
4.1 Definitions

Two geometric braids with the same endpoints are called
homotopic if one can be deformed to the other by simultaneous
homotopies of the braid strings in D2 × I which fix the endpoints,
so that different strings do not intersect.
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E. Artin asked the question that if the notion of isotopic and
homotopic of braids are the same. The question remained open
until 1974, when D. Goldsmith gave an example of a braid which is
not trivial in the isotopic sense, but is homotopic to the trivial braid.
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This braid is expressed in the canonical generators of the classical
braid group in the following form:

σ−1

1
σ−2

2
σ−2

1
σ2

2σ
2

1σ
−2

2
σ2

1σ
2

2σ
−1

1
.
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Homotopy braids

4.2. Reduced free group

Let Fn = F (x1, . . . , xn) be a free group on generators x1, . . . , xn.
Consider a subgroup generated by the commutators

gx1g
−1x−1

1
, . . . , gxng

−1x−1

n ,

where g is an arbitrary element of F (x1, . . . , xn). It is a normal
subgroup of F (x1, . . . , xn); let us denote it by N. The quotient
group Kn = F (x1, . . . , xn)/N is called the reduced free group. It
was introduced by J.Milnor and studied by Habegger & Lin,
F.Cohen and F.Cohen & Jie Wu.

V. Vershinin Braids



Theorem (Habegger and Lin)

Kn is a finitely generated nilpotent group of class ≤ n.
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Let ai ,j be the standard (Burau) generators of the pure braid group.

The homotopy braid group B̃n is the quotient of the braid group Bn

by the relations

[aik , a
g
ik
] = 1, where g ∈ 〈a1k , a2k , . . . , ak−1,k〉, 1 ≤ i < k ≤ n.
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The quotient of the pure braid group Pn by the same relations gives
the pure homotopy braid group P̃n and from the standard short
exact sequence for Bn we have the following short exact sequence

1 −→ P̃n −→ B̃n −→ Sn −→ 1,

for B̃n, where Sn is the symmetric group.
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Group P̃n has a decomposition P̃n = Ũn ⋋ P̃n−1, where Ũn is the
quotient of the free group Un = 〈a1n, a2n, . . . , an−1,n〉 of rank n − 1
by the relations

[ain, a
g
in] = 1, where g ∈ Un, 1 ≤ i < k ≤ n,
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Note, that Ũn is isomorphic to Kn−1. In particular, Ũ2 is isomorphic
to the infinite cyclic group and Ũ3 is the quotient of
U3 = 〈a13, a23〉 by the relations

a13 · a
−1

23
a13a23 = a−1

23
a13a23 · a13,

a23 · a
−1

13
a23a13 = a−1

13
a23a13 · a23.
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Homotopy braids

F.Cohen & Jie Wu proved that the canonical Artin monomorphism

νn : Bn →֒ AutFn

generates a homomorphism

ν̃n : B̃n → AutKn.

The homomorphism ν̃n is a monomorphism.

V. Vershinin Braids



Homotopy braids

Proposition

The monomorphism ν̃n solves the word problem in B̃n
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Since Kn is a finitely generated nilpotent group of class ≤ n then
from result of A.I.Mal’cev follows that the word problem is
decidable in Kn. From the fact that B̃n is a finite extension of P̃n

follows that the word problem is decidable in B̃n.
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Homotopy braids

4.3. Linearity

Existence

Recall that a group G is called linear if it has a faithful
representation into the general linear group GLm(k) for some m

and a field k .
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Theorem
The homotopy braid group B̃n is linear for all n ≥ 2. Moreover, for
every n ≥ 2 there is a natural m such that there exists a faithful
representation B̃n −→ GLm(Z)
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Proof. The reduced free group Kn, n ≥ 2 is nilpotent. Finitely
generated nilpotent groups are polycyclic and hence they are
represented by integer matrices as was proved by L.Auslender and
R.G.Swan. Also the holomorph of every polycyclic group has a
faithful representation into GLm(Z) for some m. Hence, holomorph
Hol(Kn) has a faithful representation into GLm(Z) for some m.
The holomorph of the reduced free group Hol(Kn) contains
Aut(Kn) as a subgroup and B̃n is embedded into Aut(Kn). �
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It is interesting to find a faithful linear representation of B̃n

explicitly. One can try to factor through B̃n the known
representations of Bn, for example, Burau representation.
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4.4. Factorization of the Burau representation through B̃n

Let
ρB : Bn −→ GL(Wn)

be the Burau representation of Bn, where Wn is a free
Z[t±1]-module of rank n with the basis w1,w2, . . . ,wn.
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Let n = 3. In this case the automorphisms ρB(σi ), i = 1, 2, of
module W3 act by the rule

σ1 :





w1 7−→ (1 − t)w1 + tw2,
w2 7−→ w1,
w3 7−→ w3,

σ2 :





w1 7−→ w1,
w2 7−→ (1 − t)w2 + tw3,
w3 7−→ w2,

where we write for simplicity σi instead of ρB(σi).
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Let us find the action of the generators of P3 on the module W3.
Recall, that P3 = U2 ⋋ U3, where U2 is the infinite cyclic group
with the generator a12 = σ2

1
, U3 is the free group of rank 2 with

the free generators

a13 = σ2σ
2

1σ
−1

2
, a23 = σ2

2.
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These elements define the following automorphisms of W3

a12 :





w1 7−→ (1 − t + t2)w1 + t(1 − t)w2,
w2 7−→ (1 − t)w1 + tw2,
w3 7−→ w3,

(4)
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a13 :





w1 7−→ (1 − t + t2)w1 + t(1 − t)w3,
w2 7−→ (1 − t)2w1 + w2 − (1 − t)2w3,
w3 7−→ (1 − t)w1 + tw3,

(5)
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a23 :





w1 7−→ w1,
w2 7−→ (1 − t + t2)w2 + t(1 − t)w3,
w3 7−→ (1 − t)w2 + tw3,

(6)
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a−1

23
:





w1 7−→ w1,
w2 7−→ t−1w2 + (1 − t−1)w3,
w3 7−→ t−1(1 − t−1)w2 + (1 − t−1 + t−2)w3.

(7)

V. Vershinin Braids



Let us denote by ρ̃B the representation

ρ̃B : B̃n −→ GL(Wn)

which is the factorization of ρB through B̃n.
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Proposition

The factorization of the representation ρ̃B on P̃3 is trivial. Hence,
the image ρ̃B(B3) is isomorphic to the symmetric group S3.
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Proof. To get a representation of ρ̃B(B3) we must have the
following relations among the automorphisms ai ,j (4)-(6) of W3:

[a13, a
a23

13
] = 1, [a23, a

a13

23
] = 1,

which are equivalent to the relations

a13a
a23

13
= aa23

13
a13, a23a

a13

23
= aa13

23
a23.
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From the definitions the automorphisms (4)-(7) we obtain

a−1

23
a13a23 :





w1 7−→ (1 − t + t2)w1 + t(1 − t)2w2 + t2(1 − t)w3,
w2 7−→ w2,
w3 7−→ t−1(1 − t)w1 − t−1(1 − t)2w2 + tw3.
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a13a
a23

13
:





w1 7−→ (2 − 4t + 4t2 − 2t3 + t4)w1+
(1 − t)2(−1 − t2 + t3)w2+
t2(1 − t)(2 − t + t2)w3,

w2 7−→ (1 − t)2(−t−1 + 2 − t + t2)w1+
[(1 − t)4(t + t−1) + 1]w2+
t(1 − t)2(−1 + t − t2)w3,

w3 7−→ (1 − t)(2 − t + t2)w1+
(1 − t)2[−1 + t − t2]w2+
+t2(2 − 2t + t2)w3.
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aa23

13
a13 :





w1 7−→ (1 − t + 2t3 − 2t4 + t5)w1 + t(1 − t)2w2+
+t(1 − t)(1 − 2t + 5t2 − 3t3 + t4)w3,

w2 7−→ (1 − t)2w1 + w2 − (1 − t)2w3,
w3 7−→ (1 − t)(2 − t + t2)w1 − t−1(1 − t)2w2+

+[(1 − t)2(1 + t − 2t2 + t3) + t2]w3.
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In order to satisfy relation a13a
a23

13
= aa23

13
a13 the following system of

equations should have a solution





1 − 3t + 4t2 − 4t3 + 3t4 − t5 = 0,
(1 − t)2(−1 − t − t2 + t3) = 0,
t(1 − t)5 = 0,
(1 − t)2(−t−1 + 1 − t + t2) = 0,
t−1(1 − t)4(1 + t2) = 0,
(1 − t)2(1 − t + t2 − t3) = 0,
(1 − t)2(−1 + t − t2 + t−1) = 0,
1 − t − 4t2 + 8t3 − 5t4 + t5 = 0.
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This system has a solution only if t = 1. In this case,
automorphisms a12, a13, a23 are equal to the identity
automorphism. �
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Homotopy braids

4.5. Torsion in B̃n

V.Ya.Lin in Kourovka Notebook asked the following

Question
Is there a non-trivial epimorphisms of Bn onto a non-abelian group
without torsion?

An answer to this question was done by P. Linnell and T. Schick in
2007.
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Homotopy braids

We conjecture that the group B̃n, n ≥ 3, does not have torsion and
as there exists the epimorphism Bn −→ B̃n, then B̃n is a good
candidate for another solution of the Lin’s problem.
We shall prove that B̃3 does not have torsion.
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Let P̃3, Ũ2, Ũ3 be the images of P3, U2, U3 by the canonical
epimorphism B3 −→ B̃3. Denote by bij , 1 ≤ i < j ≤ 3 the images

of aij , 1 ≤ i < j ≤ 3 by this epimorphism. Then Ũ2 = 〈b12〉 is the
infinite cyclic group and

Ũ3 = 〈b13, b23 || [b13, b
b23

13
] = [b23, b

b13

23
] = 1〉 =

= 〈b13, b23 || [b13, b13[b13, b23]] = [b23, b23[b23, b13]] = 1〉.
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Using commutator identities or direct calculations we see that the
last two relations are equivalent to the following relation

[[b23, b13], b23] = [[b23, b13], b13] = 1.
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Hence, Ũ3 is a free 2-step nilpotent group of rank 2 and so, every
element g ∈ Ũ3 has a unique presentation of the form

g = bα13b
β
23
[b23, b13]

γ

for some integers α, β, γ.
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The same way as in the case of classical braid group, Ũ3 is a
normal subgroup of P̃3 and the action of Ũ2 is defined in the
following lemma.

Lemma
The action of Ũ2 on Ũ3 is given by the formulas

b
bk
12

13
= b13[b23, b13]

k , b
bk
12

23
= b23[b23, b13]

−k ,

[b23, b13]
bk
12 = [b23, b13], k ∈ Z. �
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The action of the generators σ1 and σ2 of B̃3 on P̃3 is given in the
next lemma.

Lemma
The following conjugation formulas hold in B̃3

b
σ±1

1

12
= b12, bσ1

13
= b23[b23, b13]

−1, bσ1

23
= b13, b

σ−1

1

13
= b23,

b
σ−1

1

23
= b13[b23, b13]

−1, [b23, b13]
σ−1

1 = [b23, b13]
−1,

bσ2

12
= b13[b23, b13]

−1, bσ2

13
= b12, b

σ±1

2

23
= b23, b

σ−1

2

12
= b13,

b
σ−1

2

13
= b12[b23, b13]

−1, [b23, b13]
σ−1

2 = [b23, b13]
−1. �
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Let us denote by Λ3 = {e, σ1, σ2, σ2σ1, σ1σ2, σ1σ2σ1} the set of
representatives of P̃3 in B̃3. Then every element in B̃3 can be
written in the form

bα12b
β
13
b
γ
23
zδλ, where α, β, γ, δ ∈ Z, z = [b23, b13], λ ∈ Λ3.
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Homotopy braids

Theorem
The group B̃3 does not have torsion.
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Proof. The group P̃3 does not have torsion. Hence, if B̃3 has
elements of finite order, then they have the form

bα12b
β
13
b
γ
23
zδλ, λ ∈ Λ3 \ {e}.
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Every element which is conjugate with an element of finite order
has a finite order. Taking into account the following formulas

σ−1

1
·σ2·σ1 = b−1

12
σ1σ2σ1, σ2σ1·σ2·σ

−1

1
σ−1

2
= σ1, σ−1

1
·σ1σ2·σ1 = σ2σ1,

it is sufficient to consider only two cases: λ = σ2 and λ = σ1σ2.
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Let λ = σ2, take g = bα
12
b
β
13
b
γ
23
zδσ2. Then we have

g2 = b
α+β
12

b
α+β
13

b
2γ+1

23
zαγ+β(β−γ+α−1).
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If g2 = 1, then α+ β = 0 and we have

g2 = b
2γ+1

23
z2αγ+α.

Since 2γ + 1 cannot be zero for integer γ, the elements of this form
cannot be of finite order.
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Let λ = σ1σ2. Then we have

(σ1σ2)
2 = b12σ2σ1, (σ1σ2)

3 = b12b13b23.

V. Vershinin Braids



We calculate

g3 = (bα12b
β
13
b
γ
23
zδσ1σ2)

3 =

b
α+β+γ+1

12
b
α+β+γ+1

13
b
α+β+γ+1

23
zα(α+2γ−β)+β2+γ2−βγ+3δ+3β .
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If g3 = 1, then the following system of linear equations has a
solution over Z

{
α+ β + γ + 1 = 0,
α(α+ 2γ − β) + β2 + γ2 − βγ + 3δ + 3β = 0.
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From the first equation one gets: α = −1 − β − γ. Inserting this
equality into the second equation, we have

3(β2 + 2β + δ) + 1 = 0.

However, this equation does not have integer solutions. �
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Brunnian Braids

5. Brunnian Braids

5.1. Operations di

The operation di : Bn(M) → Bn−1(M) is obtained by forgetting the
i -th strand.
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Proposition

Let M be a surface. The operations

di : Bn(M) → Bn−1(M), 1 ≤ i ≤ n,

satisfy the following identities:

1) didj = djdi+1 for i ≥ j ;

2) di (ββ
′) = di (β)di ·β(β

′).
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Corollary

The map di is homomorphism when restricted to the pure braid
group Pn(M).
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5.2. Brunnian braids

Definition
A braid β ∈ Bn(M) is called Brunnian if it is a solution of system of
n equations 




d1(β) = 1,

. . .

dn(β) = 1.

(8)

The set of n-strand Brunnian braids is denoted by Brunn(M).
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Brunnian Braids

Intuitively a Brunnian braid means a braid that becomes trivial after
removing any one of its strands.
If β, β′ ∈ Brunn(M), then

di (ββ
′) = di (β)di ·β(β

′) = 1

for 1 ≤ i ≤ n and so the product ββ′ ∈ Brunn(M). Similar β−1 is
Brunnian provided β is. Thus Brunn(M) is a subgroup of Bn(M).
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Lie algebras and braids

6. Lie algebras and braids

6.1. Lie algebras from descending central series of groups

For a group G the descending central series

G = Γ1 ≥ Γ2 ≥ · · · ≥ Γi ≥ Γi+1 ≥ . . . .

is defined by the formulae

Γ1 = G , Γi+1 = [Γi ,G ].
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The descending central series of a discrete group G gives rise to the
associated graded Lie algebra (over Z) L(G )

Li (G ) = Γi (G )/Γi+1(G ).
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Let K be a commutative ring with unit.

Definition. An algebra L over K is called a Lie algebra over K if
its multiplication (denoted by (x , y) 7→ [x , y ]) verifies identities:

(1) [x , x ] = 0

(2) [x , [y , z ]] + [y , [z , x ]] + [z , [x , y ]] = 0 for all x , y , z in L.
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Lie algebra L
P(Brunn)

6.2. Presentation of the Lie algebra L(Pn)

This presentation was given by Toshitake Kohno. It is the quotient
of the free Lie algebra L[Ai ,j | 1 ≤ i < j ≤ n] generated by elements
Ai ,j with 1 ≤ i < j ≤ n modulo the “infinitesimal braid relations" or
“horizontal 4T relations" given by the following three relations:





[Ai ,j ,As,t ] = 0, if {i , j} ∩ {s, t} = φ,

[Ai ,j ,Ai ,k + Aj ,k ] = 0, if i < j < k ,

[Ai ,k ,Ai ,j + Aj ,k ] = 0, if i < j < k .

(9)

Where Ai ,j is the projection of the ai ,j to L(Pn).
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Lie algebra L
P(Brunn)

6.3. Lie algebra LP(Brunn)

We consider the restriction {Γq(Pn) ∩ Brunn} of the lower central
series of Pn to Brunn. This gives a relative Lie algebra

LP(Brunn) =

∞⊕

q=1

(Γq(Pn) ∩ Brunn)/(Γq+1(Pn) ∩ Brunn),

which is a two-sided Lie ideal of L(Pn). The purpose is to study the
Lie algebra LP(Brunn).
This is a Lie subalgebra of L(Pn), we call it the relative Lie algebra
associated with Brunnian subgroup of the pure braid group.
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Lie algebra L
P(Brunn)

Proposition

LP(Brunn) is a two-sided Lie ideal in L(Pn).
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Lie algebra L
P(Brunn)

6.4. Definition and properties of LP(Brunn)

The removing-strand operation on braids induces an operation

dk : L(Pn) −→ L(Pn−1)

formulated by

dk(Ai ,j) =





Ai ,j if i < j < k

0 if k = j

Ai ,j−1 if i < k < j

0 if k = i

Ai−1,j−1 if k < i < j .

(10)
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Proposition

The relative Lie algebra LP(Brunn) is the Lie subalgebra⋂n
i=1

ker(di : L(Pn) → L(Pn−1)).
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6.5. Generators for the Lie algebra LP(Brunn)
.

The following fact is a Lie algebra analogue of the theorem proved
by A. A. Markov for the pure braid group.

Proposition

The kernel of the homomorphism dn : L(Pn) → L(Pn−1) is a free
Lie algebra, generated by the free generators Ai ,n, for 1 ≤ i ≤ n− 1.

Ker(dn : L(Pn) → L(Pn−1)) = L[A1,n, . . . ,An−1,n].
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For a set Z , let L[Z ] denote the free Lie algebra freely generated by
Z . Let X and Y be non-empty sets with X ∩ Y = ∅, X ∪ Y = Z .
Let π be the Lie homomorphism

π : L[Z ] −→ L[Y ]

such that π(x) = 0 for x ∈ X and π(y) = y for y ∈ Y .
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Proposition

The kernel of π is a free Lie algebra, generated by the following
family of free generators:

x , [· · · [x , y1], . . . , yt ] (11)

for x ∈ X , yi ∈ Y for 1 ≤ i ≤ t.
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Proposition

The intersection of the kernels of the homomorphisms dn and dk ,
k 6= n, is a free Lie algebra, generated by the following infinite
family of free generators:

Ak,n, [· · · [Ak,n,Aj1,n], . . . ,Ajm,n] (12)

for ji 6= k , n; ji ≤ n − 1; i ≤ m; m ≥ 1:
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Another set of free generators of Ker(dn) ∩ Ker(dk) can be
obtained using Hall bases.
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We suppose that all Lie monomials on B1, . . . ,Bk are ordered
lexicographically.
Lie monomials B1, . . . ,Bk are the standard monomials of degree 1.
If we have defined standard monomials of degrees 1, . . . , n − 1,
then [u, v ] is a standard monomial if both of the following
conditions hold:
(1) u and v are standard monomials and u > v .
(2) If u = [x , y ] is the form of the standard monomial u, then
v ≥ y .
Standard monomials form the Hall basis of a free Lie algebra (also
over Z).
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Examples of standard monomials are the products of the type:

[· · · [Bj1 ,Bj2],Bj3 ], . . . ,Bjt ], j1 > j2 ≤ j3 ≤ · · · ≤ jt . (13)
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Proposition

The intersection Ker(dn) ∩ Ker(dk), k 6= n, is a free Lie algebra,
generated by the standard monomials on Ai ,n where the letter Ak,n

has only one enter. In other words the free generators are standard
monomials which are products of monomials of type (13) where
only one such monomial contains one copy of Ak,n.
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We recursively define the sets K(n)k , 1 ≤ k ≤ n, in the reverse
order as follows:

1) Let K(n)n = {A1,n,A2,n, . . . ,An−1,n}.

2) Suppose that K(n)k+1 (with k ≤ n− 1) is defined as a subset
of Lie monomials on the letters

A1,n,A2,n, . . . ,An−1,n.

Let

Ak = {W ∈ K(n)k+1 |W does not contain Ak,n in its entries}.

3) Define

K(n)k = {W ′ and [· · · [[W ′,W1],W2], . . . ,Wt ]}

for W ′ ∈ K(n)k+1 rAk and W1,W2, . . . ,Wt ∈ Ak with
t ≥ 1. Note that K(n)k is again a subset of Lie monomials on
letters A1,n,A2,n, . . . ,An−1,n.
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Example

Let n = 3. The set K(3)1 is constructed by the following steps:

1) K(3)3 = {A1,3,A2,3}.

2) A2 = {A1,3},

K(3)2 = {A2,3, [· · · [A2,3,A1,3], . . . ,A1,3]}.

3) A1 = {A2,3},
K(3)1 = {[· · · [A2,3,A1,3], . . . ,A1,3],A2,3], . . . ,A2,3]}.
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Theorem
The Lie algebra LP(Brunn) is a free Lie algebra generated by
K(n)1 as a set of free generators.
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6.6. The Rank of LPq (Brunn)

Observe that the Lie algebra L(P) is of finite type in the sense that
each homogeneous component Lk(Pn) is a free abelian group of
finite rank. Thus the subgroup

LP(Brunn) ∩ Lk(Pn)

is a free abelian group of finite rank. We give now a formula for the
rank of LPq (Brunn)
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Lie algebra L
P(Brunn)

Corollary

There is a formula

rank(Lq(Pn)) =
n−1∑

k=0

(
n

k

)
rank(LPq (Brunn−k))

for each n and q.
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Lie algebra L
P(Brunn)

Theorem

rank(LPq (Brunn)) =

n−1∑

k=0

(−1)k
(
n

k

)
rank(Lq(Pn−k))

for each n and q, where P1 = 0 and, for m ≥ 2,

rank(Lq(Pm)) =
1

q

m−1∑

k=1

∑

d|q

µ(d)kq/d

with µ the Möbis function.
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Lie algebra L
P(Brunn)

Results about Lie algebra LP(Brunn) are from a joint work with
Jingyan Li and Jie Wu.
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