UH

Algebra and Number Theory
Mathematics department
University of Hamburg

PD Dr. Ralf Holtkamp
Prof. Dr. C. Schweigert
Hopf algebras
Winter term 2014/2015

Sheet 1

Problem 1 (Tensor product). Let \mathbb{K} be a field, V and W be two \mathbb{K}-vector spaces. We consider $B=\left(b_{i}\right)_{i \in I}$ and $C=\left(c_{j}\right)_{j \in J}$ bases of V and W. Let us denote by $V \otimes_{(B, C)} W$ the \mathbb{K}-vector space spanned by the set $\left(b_{i}, c_{j}\right)_{i \in I, j \in J}$ and by $\phi_{(B, C)}: V \times W \rightarrow V \otimes_{(B, C)} W$ the bilinear map defined by $\phi_{(B, C)}\left(b_{i}, c_{j}\right)=\left(b_{i}, c_{j}\right)$.

1. Show that if B^{\prime} and C^{\prime} are other bases for V and W, there exists a unique isomorphism of vector spaces $\psi: V \otimes_{(B, C)} W \rightarrow V \otimes_{\left(B^{\prime}, C^{\prime}\right)} W$ such that the following diagram commutes:

From now on, the symbol $V \otimes W$ denotes the vector space $V \otimes_{(B, C)} W$ for some arbitrary but fixed bases B and C. If (x, y) is an element of $V \times W$, the symbol $x \otimes y$ denotes the image of (x, y) by $\phi_{(B, C)}$ and is called an elementary tensor. In the following we write ϕ instead of $\phi_{(B, C)}$,. If we want to emphasize the ground field, we might write $V \otimes_{\mathbb{K}} W$ and $x \otimes_{\mathbb{K}} y$.
2. If V and W are finite dimensional, what is the dimension of $V \otimes W$?
3. Prove that, for every \mathbb{K}-vector space E and for every bilinear map f from $V \times W$, there exists a unique linear map \tilde{f} such that the following diagram commutes:

4. Prove that the property given in the previous question determines the pair $(V \otimes W, \phi)$ up to a unique isomorphism (meaning that if a pair (U, ρ) satisfies the property, then there exists a unique isomorphism π from $V \otimes W$ to U such that $\phi=\pi \circ \rho$.
5. Generalizing the previous questions, define the tensor product of a finite collection of vector spaces.
6. Suppose that V and W are finite dimensional, prove that $W^{\star} \otimes V$ is "canonically" isomorphic to $\operatorname{Hom}(W, V)$. This means that every linear map from W to V can be expressed as a finite linear combination of elementary tensors.
7. If V is finite dimensional and if g is an endomorphism of V, write a formula for the trace of g tanks to the identification of $\operatorname{End}(V)$ with $V^{\star} \otimes V$.
8. Let V_{1}, V_{2}, W_{1} and W_{2} be four \mathbb{K}-vector spaces, let $f_{1}: V_{1} \rightarrow W_{1}$ and $f_{2}: V_{2} \rightarrow W_{2}$ two linear maps. Use the question 3 to define a "natural" linear map $f_{1} \otimes f_{2}: V_{1} \otimes W_{1} \rightarrow V_{2} \otimes W_{2}$. If M_{1} and M_{2} are matrices of f_{1} and f_{2} in some bases, describe a matrix representing $f_{1} \otimes f_{2}$ in some appropriate bases.
Problem 2 (Group algebra). Let \mathbb{K} be a field and G a group. Let $\mathbb{K}[G]$ denote the \mathbb{K}-vector space with basis G.

1. Show that the multiplication of the group G induces a multiplication on $\mathbb{K}[G]$ making this vector space an (associative) \mathbb{K}-algebra. It is called the group algebra of G. Is $\mathbb{K}[G]$ unital? For which groups G is the algebra $\mathbb{K}[G]$ comutative?
2. Let n be a positive integer and let us denote by A_{n} the set of matrices with shape

$$
\left(\begin{array}{ccccc}
a_{1} & a_{2} & \ldots & a_{n-1} & a_{n} \\
a_{n} & a_{1} & a_{2} & \ldots & a_{n-1} \\
a_{n-1} & a_{n} & a_{1} & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
a_{2} & \ldots & \ldots & a_{n} & a_{1}
\end{array}\right)
$$

for $a_{1}, \ldots a_{n}$ elements of \mathbb{K}. Prove that A_{n} is an algebra isomorphic to a group algebra.
3. We denote by $\mathbb{K}\left[X^{ \pm 1}\right]$ the set of Laurent polynomials over \mathbb{K}. It is defined by the following formula:

$$
\mathbb{K}\left[X^{ \pm 1}\right]=\left\{f(X) \in \mathbb{K}(X) \mid \exists l \in \mathbb{N} \text { such that } X^{l} f(X) \in \mathbb{K}[X]\right\}
$$

Prove that $\mathbb{K}\left[X^{ \pm}\right]$is isomorphic to a group algebra.
4. Suppose that G is finite of order n and \mathbb{K} is of characteristic 0 . Show that $\mathbb{K}[G]$ decomposes as a direct sum of an ideal of dimension $n-1$ and an ideal of dimension 1 .

Problem 3 (If you have never heard about categories, do not work on this problem). A functor $F: \mathcal{C} \rightarrow \mathcal{D}$ is essentially surjective if for every object W of \mathcal{D}, there exists an object U of \mathcal{C} such that $F(U) \simeq W$.

A functor $F: \mathcal{C} \rightarrow \mathcal{D}$ is faithful (resp. fully faithful) if for every pair of objects $\left(U_{1}, U_{2}\right)$ of C, the map $F: \operatorname{Hom}\left(U_{1}, U_{2}\right) \rightarrow \operatorname{Hom}\left(F\left(U_{1}\right), F\left(U_{2}\right)\right)$ is injective (resp. bijective).

A functor $F: \mathcal{C} \rightarrow \mathcal{D}$ is an equivalence of categories if there exists a functor $G: \mathcal{D} \rightarrow \mathcal{C}$ and two natural isomorphisms $\eta: \mathrm{id}_{\mathcal{D}} \rightarrow F \circ G$ and $\theta: G \circ F \rightarrow \operatorname{id}_{\mathcal{C}}$.

In this problem, we intend to prove the following theorem:
Theorem 1. A functor $F: \mathcal{C} \rightarrow \mathcal{D}$ is an equivalence of categories if and only if it is fully faithful and essentially surjective.

1. We first suppose that F is an equivalence of categories. Prove that F is essentially surjective.
2. Let U_{1} and U_{2} be two objects of \mathcal{C}. Show that θ (we use the notations introduced in the definitions) induces a bijection between $\operatorname{Hom}\left(G \circ F\left(U_{1}\right), G \circ F\left(U_{2}\right)\right)$ and $\operatorname{Hom}\left(U_{1}, U_{2}\right)$. Prove that F is faithful. Prove that G is faithful.
3. Let U_{1} and U_{2} be two objects of \mathcal{C} and $g: F\left(U_{1}\right) \rightarrow F\left(U_{2}\right)$ a morphism of \mathcal{C}. Compute $F\left(\theta\left(U_{2}\right) \circ\right.$ $\left.G(g) \circ \theta\left(U_{1}\right)^{-1}\right)$. Prove that F is fully faithful.
4. We now suppose that F is essentially surjective and fully faithful. We want to define a functor $G: \mathcal{D} \rightarrow \mathcal{C}$ and two natural isomorphisms $\eta: \operatorname{id}_{\mathcal{D}} \rightarrow F \circ G$ and $\theta: G \circ F \rightarrow \operatorname{id}_{\mathcal{C}}$. For every object W of \mathcal{D} we choose ${ }^{1}$ an object $G(W)$ of \mathcal{C} such that $F(G(W))$ is isomorphic to W and we choose ${ }^{2}$ an isomorphism $\eta(W): W \rightarrow F(G(W))$. If g is a morphism in the category \mathcal{D}, what is the "natural" definition of $G(g)$? Prove that with this definition, G is indeed a functor and $\eta: \operatorname{id}_{\mathcal{D}} \rightarrow F \circ G$ a natural transformation.
5. What is the "natural" definition of $\theta: G \circ F \rightarrow \mathrm{id}_{\mathcal{C}}$? Prove that F is an equivalence of category.
[^0]
[^0]: ${ }^{1}$ We use the axiom of choice.
 ${ }^{2}$ We use it again.

