

PD Dr. Ralf Holtkamp Prof. Dr. C. Schweigert Hopf algebras Winter term 2014/2015

## Sheet 10

**Problem 1.** Let *H* be a finite dimensional Hopf algebra, and let *M* be a *H*-modules. Prove that  $H \otimes M$  and  $M \otimes H$  are free (as *H*-modules).

**Problem 2.** Let G be a finite group and  $H = \mathbb{K}G$  its associated Hopf algebra.

- 1. What are the right and left integrals of H?
- 2. What is the distinguished group-like element of  $H^*$ ?
- 3. What is the order of the antipode?
- 4. What is the right and left integrals of  $H^*$ ?
- 5. What is the distinguished group-like element of H?
- 6. Prove that H is a symmetric algebra.

**Problem 3.** We consider the category of super vector space: object are  $\mathbb{Z}/2\mathbb{Z}$ -graded vector spaces, morphisms are linear maps, and the braiding *c* is given on homogeneous element by:

$$c_{V,W} : V \otimes W \to W \otimes V$$
  
$$v \otimes w \mapsto (-1)^{|v||w|} w \otimes v$$

where |v| and |w| denote the degree of v and w. If V is a vector space, T(V) can be endowed with a natural  $\mathbb{Z}/2\mathbb{Z}$ -grading by setting:

$$T_0(V) = \bigoplus_n V^{\otimes 2n}$$
 and  $T_1(V) = \bigoplus_n V^{\otimes 2n+1}$ .

Hence T(V) as a natural structure of super-vector space. An algebra A is called *super-commutative* if it is a super vector space and if  $m \circ c = m$ .

- 1. Recall the structure of bi-algebra on T(V).
- 2. Prove that  $(T(V) \otimes T(V), (\mu \otimes \mu) \circ \tau_{T(V) \otimes T(V)})$  is an algebra. Show that the same definition of  $\Delta$  on V yields a bialgebra structure on T(V) in the category of super-vector spaces.
- 3. Let *I* be the ideal of T(V) generated by  $\{x \otimes y + y \otimes x | x, y \in V\}$ . Prove the  $\Lambda(V) = T(V)/I$  is a bialgebra in the category of super vector spaces and that as an algebra it is super-commutative. If  $x_1, x_2, \ldots x_k$  are elements of *V*, we write:  $x_1 \wedge x_2 \wedge \cdots \wedge x_k := x_1 \otimes x_2 \otimes \cdots \otimes x_k + I$ .
- 4. Prove that  $\Lambda(V)$  is an Hopf algebra in the category of super vector spaces.
- 5. Let  $(v_1, \ldots, v_n)$  be a basis of V. For a k-tuple  $I := (i_1, i_2, \ldots, i_k)$  with  $1 \le i_\ell \le k$  we define  $v_I := v_{i_1} \land v_{i_2} \land \ldots \land v_{i_k}$ . Prove that the set  $\{v_J\}$  is a basis of  $\Lambda(V)$  where J runs over the set of all strictly ordered multi-indices, i.e.  $i_1 < i_2 < \ldots < i_k$ . What is the dimension of  $\Lambda(V)$ ?
- 6. Compute  $\Delta(v_J)$  for all multi-indices  $J = (1, 2, \dots, k)$  with  $1 \le k \le n$ .
- 7. Let  $(v^1, \ldots, v^n)$  be the dual base of  $(v_1, \ldots, v_n)$ . Show that  $\lambda := v^1 \wedge \ldots \wedge v^n \in \Lambda(V^*)$  is a two-sided cointegral for  $\Lambda(V)$ .

**Problem 4.** Let  $n \ge 2$  and  $\lambda \in \mathbb{C}$  be a primitve *n*th rooth of unity. We consider the  $\mathbb{C}$ -algebra  $H_{n^2}(\lambda)$  generated by *C* and *X* and subjccted to the relations

$$C^n = 1,$$
  $X^n = 0,$  and  $XC = \lambda CX.$ 

We define a comultiplication  $\Delta$  by setting:

$$\Delta(C) = C \otimes C \quad \Delta(X) = C \otimes X + X \otimes 1$$

- 1. Prove that  $H_{n^2}(\lambda)$  is a Hopf algebra. What is its dimension?
- 2. Give a list of isomorphism classes of simple modules of  $H_{n^2}(\lambda).$
- 3. Give a list of isomorphism classes of projective indecomposable modules of  $H_{n^2}(\lambda)$ .
- 4. What is the left integral of  $H_{n^2}(\lambda)$ ?
- 5. What is the distinguished group-like element of  $H_{n^2}(\lambda)^*$ ?