Algebra and Number Theory
Mathematics department

Sheet 10

Problem 1. Let H be a finite dimensional Hopf algebra, and let M be a H-modules. Prove that $H \otimes M$ and $M \otimes H$ are free (as H-modules).

Solution. Let us start with $H \otimes M$. We just remark that the map $\Delta_{M}=\Delta_{H} \otimes \mathrm{id}$ endows H-comodule with a structure of H-comodule. Further it is compatible with the structure of H-module in the sense that $H \otimes M$ is a Hopf-module: one only have to check that Δ_{M} is a H-module map. Indeed we have:

$$
\begin{aligned}
\Delta_{M}(h \cdot(x \otimes m)) & =\Delta_{M}\left(\sum_{(h)} h_{(1)} x \otimes h_{(2)} m\right) \\
& \left.=\sum_{(h)} \Delta\left(h_{(1)} x\right) \otimes h_{(2)} m\right) \\
& \left.=\sum_{(h),(x)} h_{(1)} x_{(1)} \otimes h_{(2)} x_{(2)} \otimes h_{(3)} m\right) \\
& \left.=h \cdot\left(\sum_{(x)} x_{(1)} \otimes x_{(2)} \otimes m\right)\right) \\
& =h \cdot \Delta_{M}(x \otimes m) .
\end{aligned}
$$

We know that Hopf modules are free. Forgetting the co-module structure we get that $H \otimes M$ is free.
Let us now inspect the case of $M \otimes H$. First remark that H being finite dimensional, the antipode S is therefor inversible and $H^{o p}$ is an Hopf algebra with antipode S^{-1}. Thus, $M \otimes H$ can be thought as a module- $H^{o p}$. From the previous case (actually its symmetric), we obtain that $M \otimes H$ is a right Hopf module over $H^{o p}$. We deduce that it is free as a module- $H^{o p}$, this mean that $M \otimes H$ is a free H-module.

Problem 2. Let G be a finite group and $H=\mathbb{K} G$ its associated Hopf algebra.

1. What are the right and left integrals of H ?

Solution. Let t be equal to $\sum_{g \in G} g$. I claim that $\mathcal{I}_{l}(H)=\mathcal{I}_{r}(H)=\mathbb{K} t$. The Hopf algebra H being finite dimensional we know that $\mathcal{I}_{l}(H)$ and $\mathcal{I}_{r}(H)$ are vector spaces of dimension 1 . We only need to check that ts in $\mathcal{I}_{l}(H)$ and in $\mathcal{I}_{r}(H)$. This is clear because for any element g of G we have:

$$
\begin{aligned}
g \cdot t & =t=\epsilon(g) t \quad \text { and } \\
t \cdot g & =t=\epsilon(g) t .
\end{aligned}
$$

2. What is the distinguished group-like element of H^{*} ?

Solution. Let us recall that the distinguished group like element α of H^{*} is determined by:

$$
x \cdot h=\alpha(h) x \quad \text { for } x \in \mathcal{I}_{l}(H) \text { and } h \in H .
$$

In our case, the Hopf algebra is uni-modular, so that we have $\alpha=\epsilon$.
3. What is the order of the antipode?

Solution. We have an explicit formula for the antipode: $S(g)=g^{-1}$, hence it is clear that S has order 2 if $G \nsucceq(\mathbb{Z} / 2 \mathbb{Z})^{\times n}$ and has order 1 in this last case.
4. Compute the right and left integrals of H^{*}.

Solution. Let us denote by e the neutral element of G. Let $\phi: \mathbb{K} G \rightarrow \mathbb{K}$ be the linear form given by $\phi(e)=1$ and $\phi(g)=0$ for $g \in G \backslash\{e\}$. I claim that $\mathcal{I}_{r}\left(H^{*}\right)=\mathcal{I}_{l}\left(H^{*}\right)=\mathbb{K} \phi$. The coevaluation on H^{*} is given by the evaluation of the unit of H (ie bye)
Let ψ be an element of H^{*}. We have for every element g of G :

$$
\begin{aligned}
\psi \phi(g) & =\sum_{(g)} \psi\left(g_{(1)}\right) \phi\left(g_{(2)}\right) \\
& =\psi(g) \phi(g) \\
& = \begin{cases}\psi(g) & \text { if } g=e \\
0 & \text { else },\end{cases} \\
& =\psi(e) \phi(g)
\end{aligned}
$$

Similarly, we have $\phi \psi(g)=\phi(e) \psi(g)$, this proves that ϕ is a left and a right integral. So that we have $\mathcal{I}_{r}\left(H^{*}\right)=\mathcal{I}_{l}\left(H^{*}\right)=\mathbb{K} \phi$.
5. What is the distinguished group-like element of H ?

Solution. The group like element is e because H^{*} is unimodular.
6. Prove that H is a symmetric algebra.

Solution. An algebra is symmetric if there exist a linear form φ making $\varphi \circ \mu$ a non degenerate. In our case we can choose $\varphi=\phi$ (see the solution to the previous question). Indeed if $x=\sum_{g \in G} \lambda_{g} g \neq 0$, we can find an element g of G such that $\lambda_{g} \neq 0$, and $\varphi\left(x g^{-1}\right) \lambda_{g} \neq 0$.

Problem 3. We consider the category of super vector space: object are $\mathbb{Z} / 2 \mathbb{Z}$-graded vector spaces, morphisms are linear maps, and the braiding c is given on homogeneous element by:

$$
\begin{array}{rccc}
c_{V, W}: V \otimes W & \rightarrow W \otimes V & \\
& v \otimes w & \mapsto & (-1)^{|v||w|} w \otimes v
\end{array}
$$

where $|v|$ and $|w|$ denote the degree of v and w. If V is a vector space, $T(V)$ can be endowed with a natural $\mathbb{Z} / 2 \mathbb{Z}$-grading by setting:

$$
T_{0}(V)=\bigoplus_{n} V^{\otimes 2 n} \quad \text { and } \quad T_{1}(V)=\bigoplus_{n} V^{\otimes 2 n+1}
$$

Hence $T(V)$ as a natural structure of super-vector space. An algebra A is called super-commutative if it is a super vector space and if $m \circ c=m$.

1. Recall the structure of bi-algebra on $T(V)$.

Solution. The multiplication is given by the structure tensor product:

$$
\mu_{\mid V \otimes i \otimes V \otimes j}=\operatorname{id}_{V \otimes i+j} .
$$

The comultiplication on V is given by:

$$
\begin{aligned}
\Delta_{\mid V}: V & \rightarrow V^{\otimes 0} \otimes V \oplus V \otimes V^{\otimes 0} \subset T(V) \\
v & \mapsto 1 \otimes v+v \otimes 1 .
\end{aligned}
$$

As V generate $T(V)$ as an algebra, this determines Δ completely since we want it to be a morphism of algebras. The counit is the canonical isomorphism with \mathbb{K} on $V^{\otimes 0}$ is equal to zero on V.
2. Prove that $\left(T(V) \otimes T(V),(\mu \otimes \mu) \circ \tau_{T(V) \otimes T(V)}\right)$ is an algebra. Show that the same definition of Δ on V yields a bialgebra structure on $T(V)$ in the category of super-vector spaces.

Solution. This is true in a more general context: the important here is that c is a braiding. If A and B are two algebras in a braided category then $\left(A \otimes B,\left(\mu_{A} \otimes \mu_{B} \circ c\right)\right.$ is an algebra. It is easy to see graphically. Δ is determined by the braiding and its value on V.
3. Let I be the ideal of $T(V)$ generated by $\{x \otimes y+y \otimes x \mid x, y \in V\}$. Prove the $\Lambda(V)=T(V) / I$ is a bialgebra in the category of super vector spaces and that as an algebra it is super-commutative. If $x_{1}, x_{2}, \ldots x_{k}$ are elements of V, we write: $x_{1} \wedge x_{2} \wedge \cdots \wedge x_{k}:=x_{1} \otimes x_{2} \otimes \cdots \otimes x_{k}+I$.

Solution. We want to show that I is a two-sided co-ideal. Let us remove the tensor product for the multiplication inside $T(V)$. Any element of I is a sum of elements of the form $t=v(x y+y x) w$ with x and y in V and v and w in $T(V)$. We want to show $\Delta(t)$ is in $I \otimes T(V)+T(V) \otimes I$.

$$
\begin{aligned}
\Delta(x y+y x) & =\Delta(x) \Delta(y)+\Delta(y) \Delta(x) \\
& =x y \otimes 1+x \otimes y-y \otimes x+1 \otimes x y+y x \otimes 1-x \otimes y+y \otimes x+1 \otimes y x \\
& =x y \otimes 1+1 \otimes x y+y x \otimes 1+1 \otimes y x) \\
& =(x y+y x) \otimes 1+1 \otimes(x y+y x) \\
& \in I \otimes T(V)+T(V) \otimes I .
\end{aligned}
$$

Δ being a morphism of algebra, $\Delta(t)$ is as well in $I \otimes T(V)+T(V) \otimes I$. Furthermore, the restriction of the counity on I is equal to zero. All together, this means that the comultiplication on $T(V)$ induces a well-defined comultiplication on $T(V) / I$, hence $T(V) / I$ is a bialgebra. We remark that I is generated by homogeneous element, this implies, that the grading is preserved and hence the $\mathbb{Z} / 2 \mathbb{Z}$-grading as well. We now want to show that $T(V) / I$ is super-commutative. Let $x=x_{1} \otimes \cdots \otimes x_{i} \in V^{\otimes i}$ and $y=y_{1} \otimes \cdots \otimes y_{j} \in V^{\otimes j}$. We have:

$$
\begin{aligned}
x \wedge y & =x_{1} \wedge x_{2} \cdots \wedge x_{i} \wedge y_{1} \wedge y_{2} \wedge \cdots \wedge y_{j} \\
& =(-1)^{i} y_{1} \wedge x_{1} \wedge x_{2} \cdots \wedge x_{i} \wedge y_{2} \wedge \cdots \wedge y_{j} \\
& =(-1)^{2 i} y_{1} \wedge y_{2} \wedge x_{1} \wedge x_{2} \cdots \wedge x_{i} \wedge y_{3} \wedge \cdots \wedge y_{j} \\
& =(-1)^{i j} y \wedge x
\end{aligned}
$$

This is the relation we wanted.
4. Prove that $\Lambda(V)$ is an Hopf algebra in the category of super vector spaces.

Solution. One can check that setting $S(x)=-x$ for $x \in V$ fulfills the requirements.
5. Let $\left(v_{1}, \ldots, v_{n}\right)$ be a basis of V. For a k-tuple $I:=\left(i_{1}, i_{2}, \ldots, i_{k}\right)$ with $1 \leq i_{\ell} \leq k$ we define $v_{I}:=$ $v_{i_{1}} \wedge v_{i_{2}} \wedge \ldots \wedge v_{i_{k}}$. Prove that the set $\left\{v_{J}\right\}$ is a basis of $\Lambda(V)$ where J runs over the set of all strictly ordered multi-indices, i.e. $i_{1}<i_{2}<\ldots<i_{k}$. What is the dimension of $\Lambda(V)$?

Solution. The fact that $v_{i} v_{j}=-v_{j} v_{i}$ implies that $\Lambda(V)$ is spanned by $\left\{v_{J}\right\}$. We want to show that this family is free Let \widetilde{V} be the vector space spanned by the symbols v_{J} where J runs over the set of all strictly ordered multi-indices. We consider the linear map ϕ from $T(V)$ to \widetilde{V} which sends an element $v_{i_{1}} \otimes \ldots v_{i_{k}}$ to 0 if the i_{j} are not distinct or to $(-1)^{|\sigma|} v_{I}$ where I is the only ordered multi-index consisting of the i_{j} and σ is the permutation mapping $\left(i_{1}, \ldots i_{k}\right)$ to I. We clearly have $I \subset \operatorname{ker} \phi$, which proves that the family $\left(v_{J}\right)$ is free. The dimension of $\Lambda(V)$ is equal to the number of ordered multi-index, this is equal to 2^{n}.
6. Compute $\Delta\left(v_{J}\right)$ for all multi-indices $J=(1,2, \ldots, k)$ with $1 \leq k \leq n$.

Solution. One shows by induction on k that:

$$
\Delta\left(v_{J}\right)=\sum_{i=0}^{k} \sum_{\sigma \in S_{i, k}} s(\sigma) v_{\sigma(1)} \wedge v_{\sigma(2)} \wedge \cdots \wedge v_{\sigma(i)} \otimes v_{\sigma(i+1)} \wedge v_{\sigma(i+2)} \wedge \cdots \wedge v_{\sigma(k)}
$$

where $S_{i, k}$ is the set of permutations ${ }^{1}$ which as applications are increasing on $[1, i]$ and on $[i+1, k]$, and $s(\sigma)$ is the signature of σ. The sign comes from the braiding of the category of super vector spaces.
7. Let $\left(v^{1}, \ldots, v^{n}\right)$ be the dual base of $\left(v_{1}, \ldots, v_{n}\right)$. Show that $\lambda:=v^{1} \wedge \ldots \wedge v^{n} \in \Lambda\left(V^{*}\right)$ is a two-sided cointegral for $\Lambda(V)$.

[^0]Solution. First note that if J_{1} and J_{2} are two ordered multi-indices, we have $v^{J_{1}}\left(v_{J_{2}}\right)=0$ if $J_{1} \neq J_{2}$ and $v^{J_{1}}\left(v_{J_{1}}\right)=(-1)^{\left(\left|J_{1}\right|\left|J_{1}\right|-1\right) / 2}$. We just have to compute $\left(\mathrm{id}_{\Lambda(V)} \otimes \lambda\right) \Delta_{\Lambda(V)}\left(v_{J}\right)$ and $\left(\lambda \otimes \operatorname{id}_{\Lambda(V)}\right) \Delta_{\Lambda(V)}\left(v_{J}\right)$: if $J \neq(1,2, \ldots, n)$ then

$$
\left(\operatorname{id}_{\Lambda(V)} \otimes \lambda\right) \Delta_{\Lambda(V)}\left(v_{J}\right)=\left(\lambda \otimes \operatorname{id}_{\Lambda(V)}\right) \Delta_{\Lambda(V)}\left(v_{J}\right)=0=\lambda\left(v_{J}\right) \cdot 1
$$

If $J=(1,2, \ldots, n)$, we have:

$$
\left(\operatorname{id}_{\Lambda(V)} \otimes \lambda\right) \Delta_{\Lambda(V)}\left(v_{J}\right)=\left(\lambda \otimes \operatorname{id}_{\Lambda(V)}\right) \Delta_{\Lambda(V)}\left(v_{J}\right)=(-1)^{n(n-1) / 2}=\lambda\left(v_{J}\right) \cdot 1
$$

Problem 4. Let $n \geq 2$ and $\lambda \in \mathbb{C}$ be a primitve nth rooth of unity. We consider the \mathbb{C}-algebra $H_{n^{2}}(\lambda)$ generated by C and X and subected to the relations

$$
C^{n}=1, \quad X^{n}=0, \quad \text { and } \quad X C=\lambda C X
$$

We define a comultiplication Δ by setting:

$$
\Delta(C)=C \otimes C \quad \Delta(X)=C \otimes X+X \otimes 1
$$

1. Prove that $H_{n^{2}}(\lambda)$ is a Hopf algebra. What is its dimension?

Solution. We have to prove that Δ is compatible with the relations and that their exists an antipode. Let us start with Δ. We have:

$$
\begin{aligned}
& \Delta(C)^{n}=(C \otimes C)^{n}=C^{n} \otimes C^{n}=1 \otimes 1=\Delta(1) \\
& \Delta(X) \Delta(C)=\lambda\left(C^{2} \otimes C X+C X \otimes C\right)=\lambda \Delta(C) \Delta(X) \\
& \Delta(X)^{n}=\sum_{k=0}^{n}\binom{n}{k}_{\lambda} C^{k} X^{n-k} \otimes X^{k}=X^{n} \otimes 1+C^{n} \otimes X^{n}=0
\end{aligned}
$$

In the last equality, $\binom{n}{k}_{\lambda}$ is the polynomial in λ analogue to the binomial coefficient. For $k \in[1, n-1]$, this polynomial is 0 because λ is a primitive root of 1 . Of course we have $\epsilon(C)=1$ and $\epsilon(X)=0$. The formulas for Δ suggest $S(C)=C^{n-1}$ and $S(X)=-C^{n-1} X$. A base of $H_{n^{2}}(\lambda)$ is clearly given by $\left(C^{i} X^{j}\right)_{0 \neq i, j \neq n}$. So that it has dimension n^{2}.
2. What is the order of the antipode?

Solution. We have $S^{2}(X)=\lambda X$, this show that S has order $2 n$.
3. Give a list of isomorphism classes of simple modules of $H_{n^{2}}(\lambda)$.

Solution. If M is a module, $X \cdot M$ is a sub-module, furthermore, $X^{n} \cdot M=\{0\}$, this shows that $X \cdot M$ is a strict sub-modules of M. If M is simple, this implies that X acts trivially on M. The action of C is diagonalisable. But on the other hand C preserves its own eigenspace, this implies that the action of C on M is a multiple (a power of λ) of the identity. For ω nth-root of 1 , we consider the 1-dimensional $H_{n^{2}}(\lambda)$-module V_{w}, where C acts by multiplication by ω and X acts by zero. This gives a list of all the n isomorphism classes of simple $H_{n^{2}}(\lambda)$-modules.
4. Give a list of isomorphism classes of projective indecomposable modules of $H_{n^{2}}(\lambda)$.

Solution. We consider the polynomial $P(t)=1+t+\cdots+t^{n-1}$ For $i \in[0, n-1]$ we consider P_{i} the sub-vector space of $H_{n^{2}}(\lambda)$ spanned by $\left(X^{j} P\left(\lambda^{i} C\right)\right)_{j \in[0, n-1]}$. The P_{i} 's are clearly projective and non-isomorphic. On the other hand, every P_{i} contains only one simple modules, so that the P_{i} 's are indecomposable. They form a full list because their sum is isomorphic to $H_{n^{2}}(\lambda)$ as a left module.
5. What is the left integral of $H_{n^{2}}(\lambda)$?

Solution. Let $t=P(C) X^{n-1}$. We claim that $\mathbb{C} t$ is the left integral of $H_{n^{2}}(\lambda)$. Indeed:

$$
C t=t=\epsilon(C) t \quad \text { and } \quad X t=0=\epsilon(X) t .
$$

6. What is the distinguished group-like element of $H_{n^{2}}(\lambda)^{*}$?

Solution. Let us denote by α the distinguished group-like element of $H_{n^{2}}(\lambda)^{*}$. We have:

$$
t X=0=\alpha(X) t \quad \text { and } \quad t C=\lambda^{n-1} t=\lambda^{-1} t=\alpha(C) t
$$

Moreover we know that α is group like. We can write the closed formula:

$$
\alpha\left(C^{i} X^{j}\right)=0^{j} \lambda^{-i} .
$$

[^0]: ${ }^{1}$ Such permutations are called a $(i, k-i)$-shuffle.

