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Problem 1. We consider the C-algebra H generated by C and X with the relations:

C2 = 1, X2 = 0 and CX +XC = 0.

1. Show that se�ing ∆(C) = C ⊗ C and ∆(X) = 1⊗X +X ⊗ C yields a well-de�ned Hopf-algebra.

Solution. We have seen this algebra (or some variation) already a few times. One should check that the de�-
nition of ∆ is compatible with the relation:

∆(C)2 = C2 ⊗ C2 = 1⊗ 1 = ∆(1)

∆(X)2 = 1⊗X2 +X ⊗ CX +X ⊗XC +X2 ⊗ C2 = X ⊗ (CX +XC) = 0 = ∆(0)

∆(C)∆(X) = C ⊗ CX + CX ⊗ 1 = −∆(C)∆(X)

�e counity is given by ε(X) = 0 and ε(C) = 1. For S we set: S(C) = C , S(X) = CX and therefor
S(CX) = CXC = −X . One easily checks that this gives indeed an antipode for H :

S(C)C = 1 = ε(C)1 S(1)X + S(X)C = 0 = ε(X)1 S(C)CX + S(CX)1 = 0 = ε(CX)1

CS(C) = 1 = ε(C)1 1S(X) +XS(C) = 0 = ε(X)1 CS(CX) + CXS(1) = 0 = ε(CX)1

2. What is the order of S?

Solution. S has of course order 4.

3. Show that

R =
1

2
(1⊗ 1 + 1⊗ C + C ⊗ 1− C ⊗ C) +

1

2
(X ⊗X +X ⊗ CX + CX ⊗ CX − CX ⊗X)

is a universal R-matrix.

Solution. First we need to show that R is invertible in H ⊗H . We remark that:

1

2
(1⊗ 1 + 1⊗ C + C ⊗ 1− C ⊗ C)2 = 1⊗ 1

If we write a = 1
2 (1⊗1+1⊗C+C⊗1−C⊗C) and t = 1

2 (X⊗X+X⊗CX+CX⊗CX−CX⊗X).
We have R = a + t = a(1 + at) further more, at is clearly nilpotent (actually (at)2 = 0). Hence we have:
(1− at)a is the inverse of R.
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We �rst need to show that ∆opp(C)R = R∆(C) and ∆opp(X)R = R∆(X).

∆opp(C)R = (C ⊗ C)

(
1

2
(1⊗ 1 + 1⊗ C + C ⊗ 1− C ⊗ C) +

1

2
(X ⊗X +X ⊗ CX + CX ⊗ CX − CX ⊗X)

)
=

1

2
(C ⊗ C + C ⊗ 1 + 1⊗ C − 1⊗ 1) +

1

2
(CX ⊗ CX + CX ⊗X +X ⊗X −X ⊗ CX)

=
1

2
(1⊗ 1 + 1⊗ C + C ⊗ 1− C ⊗ C)(C ⊗ C) +

1

2
(XC ⊗XC −XC ⊗X +X ⊗X +X ⊗XC)

=
1

2
(1⊗ 1 + 1⊗ C + C ⊗ 1− C ⊗ C)(C ⊗ C) +

1

2
(X ⊗X −X ⊗XC +XC ⊗XC +XC ⊗X)(C ⊗ C)

= R∆(C)

∆opp(X)R

= (X ⊗ 1 + C ⊗X)

(
1

2
(1⊗ 1 + 1⊗ C + C ⊗ 1− C ⊗ C) +

1

2
(X ⊗X +X ⊗ CX + CX ⊗ CX − CX ⊗X)

)
= (X ⊗ 1)

(
1

2
(1⊗ 1 + 1⊗ C + C ⊗ 1− C ⊗ C) +

1

2
(X ⊗X +X ⊗ CX + CX ⊗ CX − CX ⊗X)

)
+ (C ⊗X)

1

2

(
(1⊗ 1 + 1⊗ C + C ⊗ 1− C ⊗ C) +

1

2
(X ⊗X +X ⊗ CX + CX ⊗ CX − CX ⊗X)

)
=

1

2
(X ⊗ 1 +X ⊗ C +XC ⊗ 1−XC ⊗ C) +

1

2
(C ⊗X + C ⊗XC + 1⊗X − 1⊗XC)

=
1

2
(X ⊗ 1 +X ⊗ C − CX ⊗ 1 + CX ⊗ C) +

1

2
(C ⊗X − C ⊗ CX + 1⊗X + 1⊗ CX)

R∆(X)

=

(
1

2
(1⊗ 1 + 1⊗ C + C ⊗ 1− C ⊗ C) +

1

2
(X ⊗X +X ⊗ CX + CX ⊗ CX − CX ⊗X)

)
(1⊗X +X ⊗ C)

=

(
1

2
(1⊗ 1 + 1⊗ C + C ⊗ 1− C ⊗ C) +

1

2
(X ⊗X +X ⊗ CX + CX ⊗ CX − CX ⊗X)

)
(1⊗X)

+
1

2

(
(1⊗ 1 + 1⊗ C + C ⊗ 1− C ⊗ C) +

1

2
(X ⊗X +X ⊗ CX + CX ⊗ CX − CX ⊗X)

)
(X ⊗ C)

=
1

2
(1⊗X + 1⊗ CX + C ⊗X − C ⊗ CX) +

1

2
(X ⊗ C +X ⊗ 1 + CX ⊗ C − CX ⊗ 1)

= ∆opp(X)R.

�en we need to compute (id⊗∆)(R), (∆⊗ id)(R),R13R23 andR13R12, but let us �rst rewriteR in a more
convenient way:

R = 1⊗ 1 + C

2
+ C ⊗ 1− C

2
+

(
1⊗ 1 + C

2
− C ⊗ 1− C

2

)
(X ⊗X)

= 1⊗ 1 + C

2
+ C ⊗ 1− C

2
+ (X ⊗X)

(
1⊗ 1− C

2
+ C ⊗ 1 + C

2

)
=

1 + C

2
⊗ 1 +

1− C
2
⊗ C +

(
1 + C

2
⊗ C +

1− C
2
⊗ 1

)
(X ⊗X)

=
1 + C

2
⊗ 1 +

1− C
2
⊗ C + (X ⊗X)

(
−1− C

2
⊗ C +

1 + C

2
⊗ 1

)
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Remarking that 1+C
2 and 1−C

2 , are orthogonal idempotents, we obtain:

R13R23 = a13a23 + a13t23 + t13a23

= 1⊗ 1⊗ 1 + C

2
+ C ⊗ C ⊗ 1− C

2

+

(
1⊗ 1⊗ 1 + C

2
− C ⊗ C ⊗ 1− C

2

)
(1⊗X ⊗X)

+ (X ⊗ 1⊗X)

(
1⊗ C ⊗ 1 + C

2
+ C ⊗ 1⊗ 1− C

2

)
= (∆⊗ id)(a)

+

(
1⊗ 1⊗ 1 + C

2
− C ⊗ C ⊗ 1− C

2

)
(1⊗X ⊗X)

+

(
1⊗ C ⊗ 1− C

2
− C ⊗ 1⊗ 1 + C

2

)
(X ⊗ 1⊗X)

= (∆⊗ id)(a)

+

(
1⊗ 1⊗ 1 + C

2
− C ⊗ C ⊗ 1− C

2

)
(1⊗X ⊗X)

+

(
1⊗ 1⊗ 1− C

2
− C ⊗ C ⊗ 1 + C

2

)
(X ⊗ C ⊗X)

= (∆⊗ id)(a)

+

(
1⊗ 1⊗ 1 + C

2
− C ⊗ C ⊗ 1− C

2

)
((1⊗X +X ⊗ C)⊗X)

= (∆⊗ id)(a) + (∆⊗ id)(t) = (∆⊗ id)(R)
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R13R12 = a13a12 + a13t12 + t13a12

=
1 + C

2
⊗ 1⊗ 1 +

1− C
2
⊗ C ⊗ C

+

(
C ⊗ 1⊗ 1 + C

2
+ 1⊗ C ⊗ 1− C

2

)
(X ⊗X ⊗ 1)

+ (X ⊗ 1⊗X)

(
1⊗ 1⊗ 1 + C

2
− C ⊗ C ⊗ 1− C

2

)
= (id⊗∆)(a)

+

(
C ⊗ 1⊗ 1 + C

2
+ 1⊗ C ⊗ 1− C

2

)
(X ⊗X ⊗ 1)

+

(
1⊗ 1⊗ 1− C

2
+ C ⊗ C ⊗ 1 + C

2

)
(X ⊗ 1⊗X)

= (id⊗∆)(a)

+

(
C ⊗ C ⊗ 1 + C

2
+ 1⊗ 1⊗ 1− C

2

)
(X ⊗X ⊗ C)

+

(
1⊗ 1⊗ 1− C

2
+ C ⊗ C ⊗ 1 + C

2

)
(X ⊗ 1⊗X)

= (id⊗∆)(a)

+

(
C ⊗ C ⊗ 1 + C

2
+ 1⊗ 1⊗ 1− C

2

)
(X ⊗X ⊗ C +X ⊗ 1⊗X)

= (id⊗∆)(a)

+

(
C ⊗ C ⊗ 1 + C

2
+ 1⊗ 1⊗ 1− C

2

)
(X ⊗ (X ⊗ C + 1⊗X))

= (id⊗∆)(a) + (id⊗∆)(t) = (id⊗∆)(R)

�is shows that R is a universal R-matrix.

4. Deform R1 into Rq with q in C to obtain a one parameter family of universal R-matrices.

Solution.

Rq =
1

2
(1⊗ 1 + 1⊗ C + C ⊗ 1− C ⊗ C) +

q

2
(X ⊗X +X ⊗ CX + CX ⊗ CX − CX ⊗X)

5. Relate R−1
q and Rq .

Solution. R−1
q = τA,A(Rq)
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Problem 2. Let H be a quasi-triangular Hopf algebra with R-matrix R =
∑

(R)R(1) ⊗ R(2). Let X be a right
H-module and de�ne δ : X → X ⊗H by

v 7→
∑
R

vR(1) ⊗R(2).

1. Show that (X, δ) is a right H-comodule.

Solution. We want to show that (δ⊗ idH) ◦ δ = (idV ⊗∆) ◦ δ and (idV ⊗ ε) ◦ δ = idV Let v be an element
of X . We have:

(δ ⊗ idH) ◦ δ(v) =
∑
R

(δ(vR1))⊗R2

=
∑
R,R′

(vR1R
′
1 ⊗R′2 ⊗R2

=
∑
R,R′

(ρ⊗ idH ⊗ idH)(v ⊗R1R
′
1 ⊗R′2 ⊗R2)

=
∑
R,R′

(ρ⊗ idH ⊗ idH)(v ⊗R13 ⊗R′12)

=
∑
R

(ρ⊗ idH ⊗∆H)(v ⊗R)

=
∑
R

vR1 ⊗∆(R2)

(idV ⊗∆) ◦ δ(v)

where R = R′ (Note that we need to sum twice, that is why we take two di�erent name for the same object)
and ρ is the structural map of X as a module-H . Furthermore, we have:

(idV ⊗ ε) ◦ δ(v) = =
∑
R

vR1ε(R2)

= v

2. Show that the right action and the right coaction on X ful�ll the (right-right) Ye�er-Drinfeld condition:

(idX ⊗ µ) ◦ (τH,X ⊗ idH) ◦ (idH ⊗ (δρ))(τX,H ⊗ idH) ◦ (idX ⊗∆)

=(ρ⊗ µ) ◦ (idX ⊗ τH,H ⊗ idH) ◦ (δ ⊗∆).

Solution. Let v be an element of X and h an element of H . We compute:

(idX ⊗ µ) ◦ (τH,X ⊗ idH) ◦ (idH ⊗ (δρ))(τX,H ⊗ idH) ◦ (idX ⊗∆)(v ⊗ h)

=
∑
R,(h)

xh(2)R1 ⊗ h(1)R2

=
∑
R,(h)

xR1h(1) ⊗R2h(2)

= (ρ⊗ µ) ◦ (idX ⊗ τH,H ⊗ idH) ◦ (δ ⊗∆)(x⊗ v)
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Problem 3. LetH be a bialgebra in a strict braided category C with braiding c, i.e. H is equipped with an algebra
and a coalgebra structure which are compatible in the following way

∆µ = (µ⊗ µ)(id⊗ cH,H ⊗ id)(∆⊗∆), ∆ ◦ η = η ⊗ η, εµ = ε⊗ ε, εη = id1.

A right-right Ye�er-Drinfeld module over H is an object X in C together with an (associative, unital) action
ρ : X ⊗H → X and a (coassociative, counital) coaction δ : X → X ⊗H such that

(idX ⊗ µ)(cH,X ⊗ idH)(idH ⊗ (δρ))(cX,H ⊗ idH)(idX ⊗∆)

=(ρ⊗ µ)(idX ⊗ cH,H ⊗ idH)(δ ⊗∆).

1. Assume that H is a Hopf algebra, i.e. there is a morphism S : H → H such that

µ(S ⊗ id)∆ = ηε = µ(id⊗ S)∆.

Show that X is a Ye�er-Drinfeld module, if and only if

δρ =(idX ⊗ µ)(cH,X ⊗ idH)(idH ⊗ ρ⊗ µ)(S ⊗ idX ⊗ cH,H ⊗ idH)

(idH ⊗ δ ⊗∆)(cX,H ⊗ idH)(idX ⊗∆)

Solution. Graphically this is immediate: one should not forget the naturality of the braiding.

2. LetH be a Hopf-algebra. Show thatH is a Ye�er-Drinfeld module with δ := ∆ and ρ := µ(S⊗µ)(cH,H⊗
id)(id⊗∆).
Hint: �e following equality holds (S ⊗ S) ◦∆ = c−1

H,H ◦∆ ◦ S.

Solution. Graphically

Problem 4. Let K be a �eld and let H,L be two bi-algebras over K and φ : H → L a morphism of bialgebras.
Denote by H-Mod resp. L-Mod the category of le� modules over H resp. L and by Comod-H resp. Comod-L
the category of right H resp. L comodules.

1. Show that φ induces a functor Φ : L-mod→ H-mod.

Solution. �is is clear:

(X, ρ) 7→ (X, ρ ◦ (φ⊗ idX))

(f : X → Y ) 7→ (f : X → Y )

2. Show that the functor Φ is strict monoidal.
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Solution. We have to give natural isomorphisms between theH-modules Φ(X ⊗ Y ) and Φ(X)⊗Φ(Y ). �e
action on Φ(X ⊗ Y ) is given by

(ρX ⊗ ρY )(id⊗ τK,X ⊗ id)((∆φ)⊗ id).

�e action on Φ(X)⊗ Φ(Y ) is given by

(ρX ⊗ ρY )(φ⊗ id⊗ φ⊗ id)(id⊗ τH,X ⊗ id)(∆⊗ id).

�ese coincide since φ commutes with the coproduct. We also have to give give an H-linear isomorphism
Φ(K) ∼= K. But the H-modules Φ(K) and K are equal, which follows since K is the ground �eld with the
trivial action given by the counit and the counit is preserved by φ.
Since theH-modules Φ(X⊗Y ) and Φ(X)⊗Φ(Y ) and Φ(K) andK are equal we can take the identity linear
maps as the needed isomorphisms.

3. Show that φ induces a functor Ψ : comod-H → comod-L. Is this functor monoidal?

Solution. De�ne Ψ : comod-H → comod-K as follows

(X, δ) 7→ (X, (idX ⊗ φ) ◦ δ)
(f : X → Y ) 7→ (f : X → Y )

One has to check that (idX ⊗ φ) ◦ δ is aK-coaction onX , which follows since φ commutes with the comulti-
plications of H andK .
Since φ also commutes with the multiplications ofH andK this functor is again strict monoidal. (Remember
that the coaction of H resp. K on X ⊗ Y involves the multiplication of H resp. K .)

4. LetH,L be quasi-triangular with R-matrices R,R′. Show that in this case the functor Φ is braided, if and
only if (φ⊗ φ)(R) = R′.

Solution.

(X, δ) 7→ (X, (idX ⊗ φ) ◦ δ)
(f : X → Y ) 7→ (f : X → Y )

One has to check that (idX ⊗ φ) ◦ δ is aK-coaction onX , which follows since φ commutes with the comulti-
plications of H andK .
Since φ also commutes with the multiplications ofH andK this functor is again strict monoidal. (Remember
that the coaction of H resp. K on X ⊗ Y involves the multiplication of H resp. K .)

Assume (φ⊗ φ)(R) = R′, then Φ(cR
′

X,Y ) = cRΦ(X),Φ(Y ). �us Φ is a braided functor.
Now suppose Φ is a braided functor. We take for X and Y the regular le� K-module, i.e. K with le� multi-
plication. Since Φ is strict and braided we get the equality

Φ(cR
′

K,K) = cRΦ(K),Φ(K).

If we apply these morphisms to ηK ⊗ ηK we get the equality R′ = (φ⊗ φ)(R).

Problem 5. LetH be a quasi-triangular Hopf algebra, with antipode S,R-matrixR = R12 and Drinfeld element
u =

∑
R S(R(2))R(1). We denote ∆′ = τ ◦∆.
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1. Show that the following formula endow H ⊗H with a structure of module-H⊗4:

(x⊗ y) • (a⊗ b⊗ c⊗ d) = S(b)xa⊗ S(d)yc.

Solution. We have:
(x⊗ y) • (1⊗ 1⊗ 1⊗ 1) = S(1)x1⊗ S(1)y1 = x⊗ y

and

(x⊗ y) • ((a⊗ b⊗ c⊗ d) · (e⊗ f ⊗ g ⊗ h))

= (x⊗ y) • (ae⊗ bf ⊗ cg ⊗ dh)

= S(bf)xae⊗ S(dh)ycg

= S(f)S(b)xae⊗ S(h)S(d)ycg

= S(f)(S(b)xa)e⊗ S(h)(S(d)yc)g

= (S(b)xa⊗ S(d)yc) • (e⊗ f ⊗ g ⊗ h)

= ((x⊗ y) • (a⊗ b⊗ c⊗ d)) • (e⊗ f ⊗ g ⊗ h)

2. Compute R21 •R23 and R21 • (R23R13R12R14).

Solution. R12 •R23 = 1⊗ 1, R21 • (R23R13) = u⊗ 1 and R21 • (R23R13R12R14) = u⊗ 1

3. Prove the following equality in H⊗4: R12(∆⊗∆′)(R) = R23R13R12R14R24.

Solution. We have:

(∆⊗∆′)(R) = (idH⊗2 ⊗ τ) ◦ (∆⊗ idH⊗2) ◦ (idH ⊗∆)(R)

= (idH⊗2 ⊗ τ) ◦ (∆⊗ idH⊗2)(R13R12)

= (idH⊗2 ⊗ τ)((∆⊗ idH⊗2)(R13)(∆⊗ idH⊗2)(R12))

= (idH⊗2 ⊗ τ)(R14R24R13R23))

= (idH⊗2 ⊗ τ)(R13R23R14R24))

Multiplying on the le� by R12, we obtain:

R12(∆⊗∆′)(R) = R12R13R23R14R24

= R23R13R12R14R24

4. Prove that:
∆(u) = (R21R)−1(u⊗ u) = (u⊗ u)(R21R)−1

5. Prove that g = u(Su−1) is group like, and that S4 is an inner automorphism.
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