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Problem 1. We consider the C-algebra H generated by C' and X with the relations:
C?=1, X?=0 and CX+XC =0.

1. Show that setting A(C) = C ® C and A(X) =1® X + X ® C yields a well-defined Hopf-algebra.

Solution. We have seen this algebra (or some variation) already a few times. One should check that the defi-
nition of A is compatible with the relation:

ACP =C?*2C*=101=A(1)
AX)P=19X*+XRCX+X@XC+X*®C*=X®(CX+XC)=0=A(0)
AO)AX)=CR®CX+CX ®1=-A(C)A(X)

The counity is given by e(X) = 0 and (C') = 1. For S we set: S(C) = C, S(X) = CX and therefor
S(CX) =CXC = —X. One easily checks that this gives indeed an antipode for H :

S(C)C=1=¢C)1 SHX+S(X)C=0=¢X)1 S(CO)CX+S(CX)1=0=¢CX)1
CS(C)=1=¢C)1 1SX)+XS(C)=0=¢X)1 CSCX)+CXS5(1)=0=¢CX)1
O
2. What is the order of S?
Solution. S has of course order 4. O

3. Show that
1 1
R:5(1®1+1®C+C®1—C®C)+§(X®X+X®CX+CX®CX—CX®X)

is a universal R-matrix.

Solution. First we need to show that R is invertible in H ® H. We remark that:

1
5(1<§§)1+1<§3>C+C<}3>1—C@O)Z’:1<§:<>1
IFfwewritea=1(191+10C+C®1-C®C)andt =1(X@X+X@CX+CX®CX - CX®X).
We have R = a + t = a(1 + at) further more, at is clearly nilpotent (actually (at)? = 0). Hence we have:
(1 — at)a is the inverse of R.



We first need to show that A?P(C)R = RA(C') and APP(X

1
A%P(C)R (C®@((M®HJ®O+C®1—C
:§W®C+C®LH®C—1®U+
1
=;(1801+18C+Ce1-Ca0)(Ce

1
=;(181+180+C01-Ca0)(Ce
RA(C)

A (X)R

)R = RA(X).

1
®C)+ %X®X+X®CX+CX®CX—CX®X0

1
5(0X®C’X+C’X®X+X®X—X®CX)

@+%@C®X07XC®X+X®X+X®X®

CU+;X®X—X®XC+XC®XC+XC®XXC®@

1 1
:4X®1+C®XW§G®1+1®C+C®1—C®C}+%X®X+X®CX+CX®CX—CX®X0

1
:QX®U<2O®1+1®C+C®1—C®C%F

1
4%C®Xb(ﬂ®1+1®0+0®1—0®0%k

:;X®1+X®O+XC®1—XC®@

1
=;(X®1+X@C-CX®1+CX®0)+

RA(X)

<
5

L
2
L
2
X+10C0X+0X-CoCX)+

1®
()R

(X®X+X®CX+CX®CX—CX®X0

o= Nl

(X®X+X®CX+CX®CX—CX®X0

1
+5(C®X+C8XC+18X ~19 X0)

1
5(C®X-CoCX+18X+1®CX)

1
1I®1+1C+C®1-CC)+ 2M®X+X®CX+CX®CX—CX®X0O®X+X®O)
1I®l+1eC+C®1-C®C)+ %X®X+X®CX+CX®CX—CX®XOQ®X)
1®l+10C+C1-CoC)+ (X®X+X®CX+CX®CX—CX®XO(X®@

%X®C+X®1+CX®C—CX®U

Then we need to compute (id ® A)(R), (A ®id)(R), Ri3Ro3 and Ri3R12, but let us first rewrite R in a more

convenient way:

1+C 1-C 1+C 1-C
R=10——+C8 — +O®2—C®tyX®X)
1+C 1-C C 1+C
=1® +C® +4X®X)1®———+C®—i—
2 2 2 2
1+C 1-C C 1-C
) + —i—®0+———®1(X®X)
2 2 2 2
1+C 1-C 1-C C
:4%;7®1+47f7®0 +@X®X)<f2 C+1;®1)



Remarking that HC and %, are orthogonal idempotents, we obtain:

Ri3Ro3 = a13a23 + a13tas + ti3ass

1+C 1-C
:1@1@—2 +C0RCR® ——

2
1+C 1-C
+(1®1®—;—C®C®2>(1®X®X)
1+C 1-C
+(X®1®X)<1®O®J;+C®1®2)
= (A ®id)(a)
1+C -
+(1®1®;—C®C®2)(1®X®X)
-C 1+C
+(1®C®2—C®1®J;>(X®1®X)
= (A®id)(
e,
+(1®1®—C®C® 5 )(1®X®X)
1+C
+(1®1®—C®C® Z >(X®C®X)
= (A ®id)(
1-C
+(1®1®—O®C® )(( X +X0)®X)

2
= (A®id)(a) + (A®id)(t) = (A ®id)(R)



Ri3Ri2 = ajzaiz + aiztia + t13a12
1+C - C
T ®R1IR1+ T RCRC

1+C 1-C
+(C®1®J;+1®C®2> (X0X®1)

14+C 1-C
+(X®1®X)<1®1®J;C®C®2)

= (id® A)(a)

C
+(C®1®J;+1®C®

1-C
1®1®T+C®C®

= (id® A)(a)

Q

+(C®C®+1®l®

= (id @ A)(

Q

C
+(C®C®;+1®1®

= (id® A)(a) + (id® A)(t) = (id® A)(R)
This shows that R is a universal R-matrix.
4. Deform R, into R, with ¢ in C to obtain a one parameter family of universal 2-matrices.

Solution.

1
Rq:5(1®1+1®C+C®1—C®C)+g(X®X+X®CX+CX®CX—CX®X)

5. Relate R, ! and R,.

Solution. Rq_1 =7a,4(Ry)



Problem 2. Let H be a quasi-triangular Hopf algebra with R-matrix R = Z( r) B) ® R(2). Let X be a right
H-module and define d : X — X ® H by

v ZUR(U ® R(g).
R

1. Show that (X, d) is a right H-comodule.

Solution. We want to show that (§ ® idg) 06 = (idy ® A) 06 and (idy ® €) 06 = idy Let v be an element
of X. We have:

B ®@idg)od(v) = > (5(vR))) ® Ry
R

(URlRll ® RIQ ® R2

|
3
=

(p®idy ®idy)(v® R1 Ry ® Ry @ Ry)

=
2

(p®idH & idH)(v ® Ri3 ® R/12)

=
&

(p®idyg @ Ag)(v® R)

=[] =[]

VR ® A(Rg)

(idy ® A) o 6(v)

where R = R’ (Note that we need to sum twice, that is why we take two different name for the same object)
and p is the structural map of X as a module-H . Furthermore, we have:

(idy ® €) 0 8(v) = = wRi€(Ry)
R

2. Show that the right action and the right coaction on X fulfill the (right-right) Yetter-Drinfeld condition:

(idx X /,L) o (TH,X ® ldH) o (ldH & ((Sp))(TXJq ® ldH) o) (ldX ® A)
=(p@p)o(ldx @ T.g ®idg) o (6 ® A).

Solution. Let v be an element of X and h an element of H. We compute:
(idx ® p) o (Tr,x ®@idgr) o (idg ® (6p))(Tx, 1 @ idg) o (idx ® A)(v ® h)

= Z wh(g)Rl & h(l)Rz
R,(h)

== Z Ith(l) ® Rgh(g)
R,(h)
=(p@p)o(idx ®Tp.p ®idg) o (6 @ A)(z ®v)



Problem 3. Let H be a bialgebra in a strict braided category C with braiding c, i.e. H is equipped with an algebra
and a coalgebra structure which are compatible in the following way

Ap=(p@p)(id®cyn @id)(A®A), Aon=n®n, e=c@e en=Iid.

A right-right Yetter-Drinfeld module over H is an object X in C together with an (associative, unital) action
p: X ® H— X and a (coassociative, counital) coaction § : X — X ® H such that

(idx ® p)(cu,x ®idy)(idy ® (5p))(cx,n @ idy)(idx ® A)
=(p®@ p)(idx @ cg,p @idy)(6 @ A).

1. Assume that H is a Hopf algebra, i.e. there is a morphism S : H — H such that
w(S ®id)A = ne = p(id @ S)A.
Show that X is a Yetter-Drinfeld module, if and only if

0p =>1dx @ p)(cp,x Qidy)(idy @ p @ u)(S ®idxy @ cy,g ®idy)
(idg ® 0 ® A)(ex, g ®idg)(idx ® A)

Solution. Graphically this is immediate: one should not forget the naturality of the braiding. O

2. Let H be a Hopf-algebra. Show that H is a Yetter-Drinfeld module with § := A and p := u(S®u)(cy.g ®
id)(id ® A).
Hint: The following equality holds (S ® S) o A = c;I}IH oAoS.

Solution. Graphically O

Problem 4. Let K be a field and let H, L be two bi-algebras over K and ¢ : H — L a morphism of bialgebras.
Denote by H-Mod resp. L-Mod the category of left modules over H resp. L and by Comod-H resp. Comod-L
the category of right H resp. L comodules.

1. Show that ¢ induces a functor ® : L-mod — H-mod.
Solution. This is clear:

(X,p) = (X, po (¢ ®idx))
(fX=2Y)=(f: X=>Y)

2. Show that the functor ® is strict monoidal.



Solution. We have to give natural isomorphisms between the H-modules (X @ Y') and ®(X) ® ®(Y"). The
action on (X ®Y') is given by

(px ® py)(id ® T, x ® 1d)((A¢) ®id).
The action on (X ) ® ®(Y') is given by
(px @ py)(9p®@id® ¢ ®id)(id ® Ty x ®id)(A ® id).

These coincide since ¢ commutes with the coproduct. We also have to give give an H -linear isomorphism
®(K) = K. But the H-modules ®(K) and K are equal, which follows since K is the ground field with the
trivial action given by the counit and the counit is preserved by ¢.

Since the H-modules ®(X @Y ) and (X ) @ ®(Y') and ®(K) and K are equal we can take the identity linear
maps as the needed isomorphisms. O

3. Show that ¢ induces a functor ¥ : comod-H — comod-L. Is this functor monoidal?

Solution. Define ¥ : comod-H — comod-K as follows

(X,0) = (X, (idx ® ¢) 0 )
([ X=>Y)»(f: X=>Y)

One has to check that (idx ® ¢) 0§ is a K-coaction on X, which follows since ¢ commutes with the comulti-
plications of H and K.

Since ¢ also commutes with the multiplications of H and K this functor is again strict monoidal. (Remember
that the coaction of H resp. K on X ® Y involves the multiplication of H resp. K.) O

4. Let H, L be quasi-triangular with R-matrices R, R’. Show that in this case the functor ® is braided, if and
only if (¢ @ ¢)(R) = R

Solution.

([ X=>Y)»(f: X=>Y)
One has to check that (idx ® ¢) 0§ is a K-coaction on X, which follows since ¢ commutes with the comulti-
plications of H and K.

Since ¢ also commutes with the multiplications of H and K this functor is again strict monoidal. (Remember
that the coaction of H resp. K on X ® Y involves the multiplication of H resp. K.)

Assume (¢ @ ¢)(R) = R/, then (I)(C%Y) = cg(x)_(b(y). Thus @ is a braided functor.
Now suppose ® is a braided functor. We take for X and Y the regular left K -module, i.e. K with left multi-
plication. Since ® is strict and braided we get the equality

q’(czﬁé,x) = Cg(K),é(K)'

If we apply these morphisms to nx ® nx we get the equality R = (¢ ® ¢)(R). O

Problem 5. Let H be a quasi-triangular Hopf algebra, with antipode S, R-matrix R = ;5 and Drinfeld element
u =735 S(R))R(1). We denote A’ = 70 A,



1. Show that the following formula endow H ® H with a structure of module-H®*:

Solution. We have:

and

(z@y)e(a®b®c®d)=S(b)ra® S(d)yc

(zy)e(1®1lel)=S)zleSlyl=2y

(zey)e(a®@b®c®d) - (e® f@g®h))
=(xQy)e(ae®@bf ® cg ® dh)
(bf)xae ® S(dh)ycg
(f)S(b)zae ® S(h)S(d)ycg
(/)(S(b)za)e ® S(h)(S(d)yc)g

S
S(f
S(f

= (S(b)za® S(d)yc)e (e @ f ® g® h)
(z@y)e(a@bR@c®d)e(e® fRg®h)

2. Compute R21 L4 R23 and R21 ° (R23R13R12R14).

Solution. Rioe Ros =1® 1, Roy @ (R23R13) =u®1and Ry ® (R23R13R12R14) —u®l

3. Prove the following equality in H®*: R12(A ® A’)(R) = Ro3R13R12R14Ra4.

Solution. We have:

(AeA)(R) =

(idpe2 @ 7) 0 (A ®idpez) o (idg ® A)(R)

= (idge: ® 7) 0 (A ® idge2)(R13R12)

= (ldyge: @ 7)((A @ idgez)(Ri3)(A ® idge: ) (Ri2))
= (idge2 ® 7)(R14R24R13R23))

= (idge2 @ 7)(R13Ra3R14R24))

Multiplying on the left by R2, we obtain:

4. Prove that:

5. Prove that g = u(Su~*

Ri2(A ® A")(R) = RiaR13R23R14Ro4
= RozR13R12R14Roy

A(u) = (RyR) M u®u) = (u®u) (R R)™*

) is group like, and that S* is an inner automorphism.



