Sheet 11

Problem 1. We consider the \mathbb{C}-algebra H generated by C and X with the relations:

$$
C^{2}=1, \quad X^{2}=0 \quad \text { and } \quad C X+X C=0
$$

1. Show that setting $\Delta(C)=C \otimes C$ and $\Delta(X)=1 \otimes X+X \otimes C$ yields a well-defined Hopf-algebra.

Solution. We have seen this algebra (or some variation) already a few times. One should check that the definition of Δ is compatible with the relation:

$$
\begin{aligned}
& \Delta(C)^{2}=C^{2} \otimes C^{2}=1 \otimes 1=\Delta(1) \\
& \Delta(X)^{2}=1 \otimes X^{2}+X \otimes C X+X \otimes X C+X^{2} \otimes C^{2}=X \otimes(C X+X C)=0=\Delta(0) \\
& \Delta(C) \Delta(X)=C \otimes C X+C X \otimes 1=-\Delta(C) \Delta(X)
\end{aligned}
$$

The counity is given by $\epsilon(X)=0$ and $\epsilon(C)=1$. For S we set: $S(C)=C, S(X)=C X$ and therefor $S(C X)=C X C=-X$. One easily checks that this gives indeed an antipode for H :

$$
\begin{array}{lll}
S(C) C=1=\epsilon(C) 1 & S(1) X+S(X) C=0=\epsilon(X) 1 & S(C) C X+S(C X) 1=0=\epsilon(C X) 1 \\
C S(C)=1=\epsilon(C) 1 & 1 S(X)+X S(C)=0=\epsilon(X) 1 & C S(C X)+C X S(1)=0=\epsilon(C X) 1
\end{array}
$$

2. What is the order of S ?

Solution. S has of course order 4.
3. Show that

$$
R=\frac{1}{2}(1 \otimes 1+1 \otimes C+C \otimes 1-C \otimes C)+\frac{1}{2}(X \otimes X+X \otimes C X+C X \otimes C X-C X \otimes X)
$$

is a universal R-matrix.

Solution. First we need to show that R is invertible in $H \otimes H$. We remark that:

$$
\frac{1}{2}(1 \otimes 1+1 \otimes C+C \otimes 1-C \otimes C)^{2}=1 \otimes 1
$$

If we write $a=\frac{1}{2}(1 \otimes 1+1 \otimes C+C \otimes 1-C \otimes C)$ and $t=\frac{1}{2}(X \otimes X+X \otimes C X+C X \otimes C X-C X \otimes X)$. We have $R=a+t=a(1+a t)$ further more, at is clearly nilpotent (actually $(a t)^{2}=0$). Hence we have: $(1-a t) a$ is the inverse of R.

We first need to show that $\Delta^{\text {opp }}(C) R=R \Delta(C)$ and $\Delta^{\text {opp }}(X) R=R \Delta(X)$.

$$
\begin{aligned}
\Delta^{o p p}(C) R & =(C \otimes C)\left(\frac{1}{2}(1 \otimes 1+1 \otimes C+C \otimes 1-C \otimes C)+\frac{1}{2}(X \otimes X+X \otimes C X+C X \otimes C X-C X \otimes X)\right) \\
& =\frac{1}{2}(C \otimes C+C \otimes 1+1 \otimes C-1 \otimes 1)+\frac{1}{2}(C X \otimes C X+C X \otimes X+X \otimes X-X \otimes C X) \\
& =\frac{1}{2}(1 \otimes 1+1 \otimes C+C \otimes 1-C \otimes C)(C \otimes C)+\frac{1}{2}(X C \otimes X C-X C \otimes X+X \otimes X+X \otimes X C) \\
& =\frac{1}{2}(1 \otimes 1+1 \otimes C+C \otimes 1-C \otimes C)(C \otimes C)+\frac{1}{2}(X \otimes X-X \otimes X C+X C \otimes X C+X C \otimes X)(C \otimes C) \\
& =R \Delta(C)
\end{aligned}
$$

$$
\begin{aligned}
& \Delta^{o p p}(X) R \\
& =(X \otimes 1+C \otimes X)\left(\frac{1}{2}(1 \otimes 1+1 \otimes C+C \otimes 1-C \otimes C)+\frac{1}{2}(X \otimes X+X \otimes C X+C X \otimes C X-C X \otimes X)\right) \\
& =(X \otimes 1)\left(\frac{1}{2}(1 \otimes 1+1 \otimes C+C \otimes 1-C \otimes C)+\frac{1}{2}(X \otimes X+X \otimes C X+C X \otimes C X-C X \otimes X)\right) \\
& +(C \otimes X) \frac{1}{2}\left((1 \otimes 1+1 \otimes C+C \otimes 1-C \otimes C)+\frac{1}{2}(X \otimes X+X \otimes C X+C X \otimes C X-C X \otimes X)\right) \\
& =\frac{1}{2}(X \otimes 1+X \otimes C+X C \otimes 1-X C \otimes C)+\frac{1}{2}(C \otimes X+C \otimes X C+1 \otimes X-1 \otimes X C) \\
& =\frac{1}{2}(X \otimes 1+X \otimes C-C X \otimes 1+C X \otimes C)+\frac{1}{2}(C \otimes X-C \otimes C X+1 \otimes X+1 \otimes C X)
\end{aligned}
$$

$$
\begin{aligned}
& R \Delta(X) \\
& =\left(\frac{1}{2}(1 \otimes 1+1 \otimes C+C \otimes 1-C \otimes C)+\frac{1}{2}(X \otimes X+X \otimes C X+C X \otimes C X-C X \otimes X)\right)(1 \otimes X+X \otimes C) \\
& =\left(\frac{1}{2}(1 \otimes 1+1 \otimes C+C \otimes 1-C \otimes C)+\frac{1}{2}(X \otimes X+X \otimes C X+C X \otimes C X-C X \otimes X)\right)(1 \otimes X) \\
& +\frac{1}{2}\left((1 \otimes 1+1 \otimes C+C \otimes 1-C \otimes C)+\frac{1}{2}(X \otimes X+X \otimes C X+C X \otimes C X-C X \otimes X)\right)(X \otimes C) \\
& =\frac{1}{2}(1 \otimes X+1 \otimes C X+C \otimes X-C \otimes C X)+\frac{1}{2}(X \otimes C+X \otimes 1+C X \otimes C-C X \otimes 1) \\
& =\Delta^{o p p}(X) R .
\end{aligned}
$$

Then we need to compute $(\mathrm{id} \otimes \Delta)(R),(\Delta \otimes \mathrm{id})(R), R_{13} R_{23}$ and $R_{13} R_{12}$, but let us first rewrite R in a more convenient way:

$$
\begin{aligned}
R & =1 \otimes \frac{1+C}{2}+C \otimes \frac{1-C}{2} & & +\left(1 \otimes \frac{1+C}{2}-C \otimes \frac{1-C}{2}\right)(X \otimes X) \\
& =1 \otimes \frac{1+C}{2}+C \otimes \frac{1-C}{2} & & +(X \otimes X)\left(1 \otimes \frac{1-C}{2}+C \otimes \frac{1+C}{2}\right) \\
& =\frac{1+C}{2} \otimes 1+\frac{1-C}{2} \otimes C & & +\left(\frac{1+C}{2} \otimes C+\frac{1-C}{2} \otimes 1\right)(X \otimes X) \\
& =\frac{1+C}{2} \otimes 1+\frac{1-C}{2} \otimes C & & +(X \otimes X)\left(-\frac{1-C}{2} \otimes C+\frac{1+C}{2} \otimes 1\right)
\end{aligned}
$$

Remarking that $\frac{1+C}{2}$ and $\frac{1-C}{2}$, are orthogonal idempotents, we obtain:

$$
\begin{aligned}
R_{13} R_{23}= & a_{13} a_{23}+a_{13} t_{23}+t_{13} a_{23} \\
= & 1 \otimes 1 \otimes \frac{1+C}{2}+C \otimes C \otimes \frac{1-C}{2} \\
& +\left(1 \otimes 1 \otimes \frac{1+C}{2}-C \otimes C \otimes \frac{1-C}{2}\right)(1 \otimes X \otimes X) \\
& +(X \otimes 1 \otimes X)\left(1 \otimes C \otimes \frac{1+C}{2}+C \otimes 1 \otimes \frac{1-C}{2}\right) \\
= & (\Delta \otimes \mathrm{id})(a) \\
& +\left(1 \otimes 1 \otimes \frac{1+C}{2}-C \otimes C \otimes \frac{1-C}{2}\right)(1 \otimes X \otimes X) \\
& +\left(1 \otimes C \otimes \frac{1-C}{2}-C \otimes 1 \otimes \frac{1+C}{2}\right)(X \otimes 1 \otimes X) \\
= & (\Delta \otimes \mathrm{id})(a) \\
& +\left(1 \otimes 1 \otimes \frac{1+C}{2}-C \otimes C \otimes \frac{1-C}{2}\right)(1 \otimes X \otimes X) \\
& +\left(1 \otimes 1 \otimes \frac{1-C}{2}-C \otimes C \otimes \frac{1+C}{2}\right)(X \otimes C \otimes X) \\
= & (\Delta \otimes \mathrm{id})(a) \\
& +\left(1 \otimes 1 \otimes \frac{1+C}{2}-C \otimes C \otimes \frac{1-C}{2}\right)((1 \otimes X+X \otimes C) \otimes X) \\
= & (\Delta \otimes \mathrm{id})(a)+(\Delta \otimes \mathrm{id})(t)=(\Delta \otimes \mathrm{id})(R)
\end{aligned}
$$

$$
\begin{aligned}
R_{13} R_{12}= & a_{13} a_{12}+a_{13} t_{12}+t_{13} a_{12} \\
= & \frac{1+C}{2} \otimes 1 \otimes 1+\frac{1-C}{2} \otimes C \otimes C \\
& +\left(C \otimes 1 \otimes \frac{1+C}{2}+1 \otimes C \otimes \frac{1-C}{2}\right)(X \otimes X \otimes 1) \\
& +(X \otimes 1 \otimes X)\left(1 \otimes 1 \otimes \frac{1+C}{2}-C \otimes C \otimes \frac{1-C}{2}\right) \\
= & (\mathrm{id} \otimes \Delta)(a) \\
& +\left(C \otimes 1 \otimes \frac{1+C}{2}+1 \otimes C \otimes \frac{1-C}{2}\right)(X \otimes X \otimes 1) \\
& +\left(1 \otimes 1 \otimes \frac{1-C}{2}+C \otimes C \otimes \frac{1+C}{2}\right)(X \otimes 1 \otimes X) \\
= & (\mathrm{id} \otimes \Delta)(a) \\
& +\left(C \otimes C \otimes \frac{1+C}{2}+1 \otimes 1 \otimes \frac{1-C}{2}\right)(X \otimes X \otimes C) \\
& +\left(1 \otimes 1 \otimes \frac{1-C}{2}+C \otimes C \otimes \frac{1+C}{2}\right)(X \otimes 1 \otimes X) \\
= & (\mathrm{id} \otimes \Delta)(a) \\
& +\left(C \otimes C \otimes \frac{1+C}{2}+1 \otimes 1 \otimes \frac{1-C}{2}\right)(X \otimes X \otimes C+X \otimes 1 \otimes X) \\
= & (\mathrm{id} \otimes \Delta)(a) \\
& +\left(C \otimes C \otimes \frac{1+C}{2}+1 \otimes 1 \otimes \frac{1-C}{2}\right)(X \otimes(X \otimes C+1 \otimes X)) \\
= & (\mathrm{id} \otimes \Delta)(a)+(\mathrm{id} \otimes \Delta)(t)=(\mathrm{id} \otimes \Delta)(R)
\end{aligned}
$$

This shows that R is a universal R-matrix.
4. Deform R_{1} into R_{q} with q in \mathbb{C} to obtain a one parameter family of universal R-matrices.

Solution.

$$
R_{q}=\frac{1}{2}(1 \otimes 1+1 \otimes C+C \otimes 1-C \otimes C)+\frac{q}{2}(X \otimes X+X \otimes C X+C X \otimes C X-C X \otimes X)
$$

5. Relate R_{q}^{-1} and R_{q}.

Solution. $R_{q}^{-1}=\tau_{A, A}\left(R_{q}\right)$

Problem 2. Let H be a quasi-triangular Hopf algebra with R-matrix $R=\sum_{(R)} R_{(1)} \otimes R_{(2)}$. Let X be a right H-module and define $\delta: X \rightarrow X \otimes H$ by

$$
v \mapsto \sum_{R} v R_{(1)} \otimes R_{(2)}
$$

1. Show that (X, δ) is a right H-comodule.

Solution. We want to show that $\left(\delta \otimes \operatorname{id}_{H}\right) \circ \delta=\left(\mathrm{id}_{V} \otimes \Delta\right) \circ \delta$ and $\left(\mathrm{id}_{V} \otimes \epsilon\right) \circ \delta=\mathrm{id}_{V}$ Let v be an element of X. We have:

$$
\begin{aligned}
\left(\delta \otimes \operatorname{id}_{H}\right) \circ \delta(v) & =\sum_{R}\left(\delta\left(v R_{1}\right)\right) \otimes R_{2} \\
& =\sum_{R, R^{\prime}}\left(v R_{1} R_{1}^{\prime} \otimes R_{2}^{\prime} \otimes R_{2}\right. \\
& =\sum_{R, R^{\prime}}\left(\rho \otimes \operatorname{id}_{H} \otimes \operatorname{id}_{H}\right)\left(v \otimes R_{1} R_{1}^{\prime} \otimes R_{2}^{\prime} \otimes R_{2}\right) \\
& =\sum_{R, R^{\prime}}\left(\rho \otimes \operatorname{id}_{H} \otimes \mathrm{id}_{H}\right)\left(v \otimes R_{13} \otimes R_{12}^{\prime}\right) \\
& =\sum_{R}\left(\rho \otimes \operatorname{id}_{H} \otimes \Delta_{H}\right)(v \otimes R) \\
& =\sum_{R} v R_{1} \otimes \Delta\left(R_{2}\right)
\end{aligned}
$$

$$
\left(\operatorname{id}_{V} \otimes \Delta\right) \circ \delta(v)
$$

where $R=R^{\prime}$ (Note that we need to sum twice, that is why we take two different name for the same object) and ρ is the structural map of X as a module- H. Furthermore, we have:

$$
\begin{aligned}
\left(\mathrm{id}_{V} \otimes \epsilon\right) \circ \delta(v) & = \\
& =v
\end{aligned}
$$

2. Show that the right action and the right coaction on X fulfill the (right-right) Yetter-Drinfeld condition:

$$
\begin{aligned}
& \left(\operatorname{id}_{X} \otimes \mu\right) \circ\left(\tau_{H, X} \otimes \operatorname{id}_{H}\right) \circ\left(\operatorname{id}_{H} \otimes(\delta \rho)\right)\left(\tau_{X, H} \otimes \operatorname{id}_{H}\right) \circ\left(\operatorname{id}_{X} \otimes \Delta\right) \\
= & (\rho \otimes \mu) \circ\left(\operatorname{id}_{X} \otimes \tau_{H, H} \otimes \operatorname{id}_{H}\right) \circ(\delta \otimes \Delta) .
\end{aligned}
$$

Solution. Let v be an element of X and h an element of H. We compute:

$$
\begin{aligned}
& \left(\mathrm{id}_{X} \otimes \mu\right) \circ\left(\tau_{H, X} \otimes \mathrm{id}_{H}\right) \circ\left(\mathrm{id}_{H} \otimes(\delta \rho)\right)\left(\tau_{X, H} \otimes \mathrm{id}_{H}\right) \circ\left(\mathrm{id}_{X} \otimes \Delta\right)(v \otimes h) \\
& =\sum_{R,(h)} x h_{(2)} R_{1} \otimes h_{(1)} R_{2} \\
& =\sum_{R,(h)} x R_{1} h_{(1)} \otimes R_{2} h_{(2)} \\
& =(\rho \otimes \mu) \circ\left(\operatorname{id}_{X} \otimes \tau_{H, H} \otimes \operatorname{id}_{H}\right) \circ(\delta \otimes \Delta)(x \otimes v)
\end{aligned}
$$

Problem 3. Let H be a bialgebra in a strict braided category \mathcal{C} with braiding c, i.e. H is equipped with an algebra and a coalgebra structure which are compatible in the following way

$$
\Delta \mu=(\mu \otimes \mu)\left(\mathrm{id} \otimes c_{H, H} \otimes \mathrm{id}\right)(\Delta \otimes \Delta), \quad \Delta \circ \eta=\eta \otimes \eta, \quad \epsilon \mu=\epsilon \otimes \epsilon, \quad \epsilon \eta=\mathrm{id}_{1}
$$

A right-right Yetter-Drinfeld module over H is an object X in \mathcal{C} together with an (associative, unital) action $\rho: X \otimes H \rightarrow X$ and a (coassociative, counital) coaction $\delta: X \rightarrow X \otimes H$ such that

$$
\begin{aligned}
& \left(\operatorname{id}_{X} \otimes \mu\right)\left(c_{H, X} \otimes \operatorname{id}_{H}\right)\left(\operatorname{id}_{H} \otimes(\delta \rho)\right)\left(c_{X, H} \otimes \operatorname{id}_{H}\right)\left(\mathrm{id}_{X} \otimes \Delta\right) \\
= & (\rho \otimes \mu)\left(\operatorname{id}_{X} \otimes c_{H, H} \otimes \operatorname{id}_{H}\right)(\delta \otimes \Delta) .
\end{aligned}
$$

1. Assume that H is a Hopf algebra, i.e. there is a morphism $S: H \rightarrow H$ such that

$$
\mu(S \otimes \mathrm{id}) \Delta=\eta \epsilon=\mu(\mathrm{id} \otimes S) \Delta
$$

Show that X is a Yetter-Drinfeld module, if and only if

$$
\begin{aligned}
\delta \rho= & \left(\operatorname{id}_{X} \otimes \mu\right)\left(c_{H, X} \otimes \operatorname{id}_{H}\right)\left(\mathrm{id}_{H} \otimes \rho \otimes \mu\right)\left(S \otimes \mathrm{id}_{X} \otimes c_{H, H} \otimes \mathrm{id}_{H}\right) \\
& \left(\mathrm{id}_{H} \otimes \delta \otimes \Delta\right)\left(c_{X, H} \otimes \operatorname{id}_{H}\right)\left(\mathrm{id}_{X} \otimes \Delta\right)
\end{aligned}
$$

Solution. Graphically this is immediate: one should not forget the naturality of the braiding.
2. Let H be a Hopf-algebra. Show that H is a Yetter-Drinfeld module with $\delta:=\Delta$ and $\rho:=\mu(S \otimes \mu)\left(c_{H, H} \otimes\right.$ $\mathrm{id})(\mathrm{id} \otimes \Delta)$.
Hint: The following equality holds $(S \otimes S) \circ \Delta=c_{H, H}^{-1} \circ \Delta \circ S$.

Solution. Graphically

Problem 4. Let \mathbb{K} be a field and let H, L be two bi-algebras over \mathbb{K} and $\phi: H \rightarrow L$ a morphism of bialgebras. Denote by H-Mod resp. L-Mod the category of left modules over H resp. L and by Comod- H resp. Comod- L the category of right H resp. L comodules.

1. Show that ϕ induces a functor $\Phi: L$-mod $\rightarrow H$-mod.

Solution. This is clear:

$$
\begin{aligned}
(X, \rho) & \mapsto\left(X, \rho \circ\left(\phi \otimes \operatorname{id}_{X}\right)\right) \\
(f: X \rightarrow Y) & \mapsto(f: X \rightarrow Y)
\end{aligned}
$$

2. Show that the functor Φ is strict monoidal.

Solution. We have to give natural isomorphisms between the H-modules $\Phi(X \otimes Y)$ and $\Phi(X) \otimes \Phi(Y)$. The action on $\Phi(X \otimes Y)$ is given by

$$
\left(\rho_{X} \otimes \rho_{Y}\right)\left(\mathrm{id} \otimes \tau_{K, X} \otimes \mathrm{id}\right)((\Delta \phi) \otimes \mathrm{id})
$$

The action on $\Phi(X) \otimes \Phi(Y)$ is given by

$$
\left(\rho_{X} \otimes \rho_{Y}\right)(\phi \otimes \mathrm{id} \otimes \phi \otimes \mathrm{id})\left(\mathrm{id} \otimes \tau_{H, X} \otimes \mathrm{id}\right)(\Delta \otimes \mathrm{id})
$$

These coincide since ϕ commutes with the coproduct. We also have to give give an H-linear isomorphism $\Phi(\mathbb{K}) \cong \mathbb{K}$. But the H-modules $\Phi(\mathbb{K})$ and \mathbb{K} are equal, which follows since \mathbb{K} is the ground field with the trivial action given by the counit and the counit is preserved by ϕ.
Since the H-modules $\Phi(X \otimes Y)$ and $\Phi(X) \otimes \Phi(Y)$ and $\Phi(\mathbb{K})$ and \mathbb{K} are equal we can take the identity linear maps as the needed isomorphisms.
3. Show that ϕ induces a functor $\Psi: \operatorname{comod}-H \rightarrow \operatorname{comod}-L$. Is this functor monoidal?

Solution. Define $\Psi:$ comod- $H \rightarrow$ comod- K as follows

$$
\begin{aligned}
(X, \delta) & \mapsto\left(X,\left(\operatorname{id}_{X} \otimes \phi\right) \circ \delta\right) \\
(f: X \rightarrow Y) & \mapsto(f: X \rightarrow Y)
\end{aligned}
$$

One has to check that $\left(\mathrm{id}_{X} \otimes \phi\right) \circ \delta$ is a K-coaction on X, which follows since ϕ commutes with the comultiplications of H and K.
Since ϕ also commutes with the multiplications of H and K this functor is again strict monoidal. (Remember that the coaction of H resp. K on $X \otimes Y$ involves the multiplication of H resp. K.)
4. Let H, L be quasi-triangular with R-matrices R, R^{\prime}. Show that in this case the functor Φ is braided, if and only if $(\phi \otimes \phi)(R)=R^{\prime}$.

Solution.

$$
\begin{aligned}
(X, \delta) & \mapsto\left(X,\left(\operatorname{id}_{X} \otimes \phi\right) \circ \delta\right) \\
(f: X \rightarrow Y) & \mapsto(f: X \rightarrow Y)
\end{aligned}
$$

One has to check that $\left(\mathrm{id}_{X} \otimes \phi\right) \circ \delta$ is a K-coaction on X, which follows since ϕ commutes with the comultiplications of H and K.
Since ϕ also commutes with the multiplications of H and K this functor is again strict monoidal. (Remember that the coaction of H resp. K on $X \otimes Y$ involves the multiplication of H resp. K.)

Assume $(\phi \otimes \phi)(R)=R^{\prime}$, then $\Phi\left(c_{X, Y}^{R^{\prime}}\right)=c_{\Phi(X), \Phi(Y)}^{R}$. Thus Φ is a braided functor.
Now suppose Φ is a braided functor. We take for X and Y the regular left K-module, i.e. K with left multiplication. Since Φ is strict and braided we get the equality

$$
\Phi\left(c_{K, K}^{R^{\prime}}\right)=c_{\Phi(K), \Phi(K)}^{R}
$$

If we apply these morphisms to $\eta_{K} \otimes \eta_{K}$ we get the equality $R^{\prime}=(\phi \otimes \phi)(R)$.

Problem 5. Let H be a quasi-triangular Hopf algebra, with antipode S, R-matrix $R=R_{12}$ and Drinfeld element $u=\sum_{R} S\left(R_{(2)}\right) R_{(1)}$. We denote $\Delta^{\prime}=\tau \circ \Delta$.

1. Show that the following formula endow $H \otimes H$ with a structure of module $-H^{\otimes 4}$:

$$
(x \otimes y) \bullet(a \otimes b \otimes c \otimes d)=S(b) x a \otimes S(d) y c
$$

Solution. We have:

$$
(x \otimes y) \bullet(1 \otimes 1 \otimes 1 \otimes 1)=S(1) x 1 \otimes S(1) y 1=x \otimes y
$$

and

$$
\begin{aligned}
(x & \otimes y) \bullet((a \otimes b \otimes c \otimes d) \cdot(e \otimes f \otimes g \otimes h)) \\
& =(x \otimes y) \bullet(a e \otimes b f \otimes c g \otimes d h) \\
& =S(b f) x a e \otimes S(d h) y c g \\
& =S(f) S(b) x a e \otimes S(h) S(d) y c g \\
& =S(f)(S(b) x a) e \otimes S(h)(S(d) y c) g \\
& =(S(b) x a \otimes S(d) y c) \bullet(e \otimes f \otimes g \otimes h) \\
& =((x \otimes y) \bullet(a \otimes b \otimes c \otimes d)) \bullet(e \otimes f \otimes g \otimes h)
\end{aligned}
$$

2. Compute $R_{21} \bullet R_{23}$ and $R_{21} \bullet\left(R_{23} R_{13} R_{12} R_{14}\right)$.

Solution. $R_{12} \bullet R_{23}=1 \otimes 1, R_{21} \bullet\left(R_{23} R_{13}\right)=u \otimes 1$ and $R_{21} \bullet\left(R_{23} R_{13} R_{12} R_{14}\right)=u \otimes 1$
3. Prove the following equality in $H^{\otimes 4}: R_{12}\left(\Delta \otimes \Delta^{\prime}\right)(R)=R_{23} R_{13} R_{12} R_{14} R_{24}$.

Solution. We have:

$$
\begin{aligned}
\left(\Delta \otimes \Delta^{\prime}\right)(R) & =\left(\operatorname{id}_{H^{\otimes 2}} \otimes \tau\right) \circ\left(\Delta \otimes \operatorname{id}_{H^{\otimes 2}}\right) \circ\left(\operatorname{id}_{H} \otimes \Delta\right)(R) \\
& =\left(\operatorname{id}_{H^{\otimes 2}} \otimes \tau\right) \circ\left(\Delta \otimes \operatorname{id}_{H^{\otimes 2}}\right)\left(R_{13} R_{12}\right) \\
& =\left(\operatorname{id}_{H^{\otimes 2}} \otimes \tau\right)\left(\left(\Delta \otimes \operatorname{id}_{H^{\otimes 2}}\right)\left(R_{13}\right)\left(\Delta \otimes \operatorname{id}_{H^{\otimes 2}}\right)\left(R_{12}\right)\right) \\
& \left.=\left(\operatorname{id}_{H^{\otimes 2}} \otimes \tau\right)\left(R_{14} R_{24} R_{13} R_{23}\right)\right) \\
& \left.=\left(\operatorname{id}_{H^{\otimes 2}} \otimes \tau\right)\left(R_{13} R_{23} R_{14} R_{24}\right)\right)
\end{aligned}
$$

Multiplying on the left by R_{12}, we obtain:

$$
\begin{aligned}
R_{12}\left(\Delta \otimes \Delta^{\prime}\right)(R) & =R_{12} R_{13} R_{23} R_{14} R_{24} \\
& =R_{23} R_{13} R_{12} R_{14} R_{24}
\end{aligned}
$$

4. Prove that:

$$
\Delta(u)=\left(R_{21} R\right)^{-1}(u \otimes u)=(u \otimes u)\left(R_{21} R\right)^{-1}
$$

5. Prove that $g=u\left(S u^{-1}\right)$ is group like, and that S^{4} is an inner automorphism.
