UH

iti
Universität Hamburg
der forschung I der lehre I der bildung
Algebra and Number Theory
Mathematics department
University of Hamburg

PD Dr. Ralf Holtkamp
Prof. Dr. C. Schweigert
Hopf algebras
Winter term 2014/2015

Sheet 1

Problem 1 (Tensor product). Let \mathbb{K} be a field, V and W be two \mathbb{K}-vector spaces. We consider $B=\left(b_{i}\right)_{i \in I}$ and $C=\left(c_{j}\right)_{j \in J}$ bases of V and W. Let us denote by $V \otimes_{(B, C)} W$ the \mathbb{K}-vector space spanned by the set $\left(b_{i}, c_{j}\right)_{i \in I, j \in J}$ and by $\phi_{(B, C)}: V \times W \rightarrow V \otimes_{(B, C)} W$ the bilinear map defined by $\phi_{(B, C)}\left(b_{i}, c_{j}\right)=\left(b_{i}, c_{j}\right)$.

1. Show that if B^{\prime} and C^{\prime} are other bases for V and W, there exists a unique isomorphism of vector spaces $\psi: V \otimes_{(B, C)} W \rightarrow V \otimes_{\left(B^{\prime}, C^{\prime}\right)} W$ such that the following diagram commutes:

From now on, the symbol $V \otimes W$ denotes the vector space $V \otimes_{(B, C)} W$ for some arbitrary but fixed bases B and C. If (x, y) is an element of $V \times W$, the symbol $x \otimes y$ denotes the image of (x, y) by $\phi_{(B, C)}$ and is called an elementary tensor. In the following we write ϕ instead of $\phi_{(B, C)}$. . If we want to emphasize the ground field, we might write $V \otimes_{\mathbb{K}} W$ and $x \otimes_{\mathbb{K}} y$.

By definition $\left(b_{i}, c_{j}\right)_{i \in I, j \in J}$ is a base of $V \otimes W$, hence to define a morphism from $V \otimes_{(B, C)} W$ to $V \otimes_{\left(B^{\prime}, C^{\prime}\right)} W$, we only need to set the image of $\left(b_{i}, c_{j}\right)$ for every $(i, j) \in I \times J$. As we want the diagram to commute we have to (this gives uniqueness) set $\psi\left(b_{i}, c_{j}\right)=\phi_{\left(B^{\prime}, C^{\prime}\right)}\left(b_{i}, c_{j}\right)$. It is routine to check that the diagram commutes. Note that the uniqueness of ψ allows us to speak about $x \otimes y$ without specifying in which space we consider it.
2. If V and W are finite dimensional, what is the dimension of $V \otimes W$?

It is of course the product of the dimension of V and W.
3. Prove that, for every \mathbb{K}-vector space E and for every bilinear map f from $V \times W$, there exists a unique linear map \tilde{f} such that the following diagram commutes:

The bilinear map f is completely determined by the image of a of $B \times C$. This suggests to define \tilde{f} by setting the images of $(b \otimes c)$ to be equal to $f((b, c))$ for b in B and c in C. It is easy to check that the diagram indeed commutes. The uniqueness is clear.
4. Prove that the property given in the previous question determines the pair $(V \otimes W, \phi)$ up to a unique isomorphism (meaning that if a pair (U, ρ) satisfies the property, then there exists a unique isomorphism π from $V \otimes W$ to U such that $\phi=\pi \circ \rho$.

Let (U, ρ) be a pair such that for every vector space E and every bilinear map $f: V \times W \rightarrow E$ there exists a linear map $\hat{f}: U \rightarrow E$ such that $f=\hat{f} \circ \rho$. We can apply this property to the vector space $V \otimes W$ and the bilinear map ϕ. We find a (unique) map $\hat{\phi}$ such that $\phi=\hat{\phi} \circ \rho$. The map $\hat{\phi}$ is an isomorphism: indeed, if we apply the property of $V \otimes W$ to the vector space U and the bilinear map ρ we obtain a linear map $\tilde{\rho}: V \otimes W \rightarrow U$ such that: $\rho=\tilde{\rho} \circ \phi$. Using the uniqueness of the property twice, we obtain that $\tilde{\rho} \circ \hat{\phi}=\operatorname{id}_{V \otimes W}$ and $\hat{\phi} \circ \tilde{\rho}=\mathrm{id}_{U}$
5. Generalizing the previous questions, define the tensor product of a finite collection of vector spaces.

Let $V_{1}, V_{2}, \ldots, V_{n}$ be a collection of \mathbb{K}-vector spaces, and suppose that there exist a vector space, W and a n-linear map ϕ, such that for every \mathbb{K}-vector space E and every n-linear map $f: V_{1} \times V_{2} \times$ $\times \ldots V_{n}: E$, there exists a linear map $\tilde{f}: W \rightarrow E$ such that the following diagram commutes:

The argument of last question shows that such a pair (W, ϕ) is unique. For the existence, this is clear: if $B_{1}, B_{2}, \ldots B_{n}$ are bases of $V_{1}, V_{2}, \ldots, V_{n}$ we consider the vector space spanned by the element of $B_{1} \times B_{2} \times \ldots B_{n}$ and the map ϕ is defined exactly as in the first question.
6. Suppose that V and W are finite dimensional, prove that $W^{\star} \otimes V$ is "canonically" isomorphic to Hom (W, V). This means that every linear map from W to V can be expressed as a finite linear combination of elementary tensors.

Actually we only need W to be finite dimensional. Let us define χ the isomorphism between $W^{\star} \otimes V$ and $\operatorname{Hom}(W, V)$:

$$
\begin{aligned}
\chi: \quad W^{\star} \otimes V & \rightarrow \operatorname{Hom}(W, V) \\
f \otimes v & \mapsto(W \ni x \mapsto f(x) v \in V) .
\end{aligned}
$$

To prove that χ is an isomorphism, we exhibit its inverse: let $B=\left(b_{1}, \ldots b_{k}\right)$ be a base of W and $B^{\star}=\left(b_{1}^{\star}, \ldots, b_{k}^{\star}\right)$ its dual base, then we define:

$$
\begin{aligned}
\chi^{-1}: & \operatorname{Hom}(W, V)
\end{aligned} \rightarrow W^{\star} \otimes V .
$$

One easily checks that these two morphisms are inverse from each others.
7. If V is finite dimensional and if g is an endomorphism of V, write a formula for the trace of g tanks to the identification of $\operatorname{End}(V)$ with $V^{\star} \otimes V$.

Let g be an endomorphism of V. We want to express the trace of g thanks to $\chi^{-1}(g)$. If $\chi^{-1}(g)=$ $\sum_{l} f_{l} \otimes v_{l}$ we claim that $\operatorname{tr}(g)=\sum_{l} f_{l}\left(v_{l}\right)$. Indeed the right-hand side of this formula defines a linear form from $W^{\star} \otimes V$ to \mathbb{K}, and it agrees with the trace on the base of $W^{\star} \otimes V$ given by $b_{i}^{\star} \otimes b_{j}$.
8. Let V_{1}, V_{2}, W_{1} and W_{2} be four \mathbb{K}-vector spaces, let $f_{1}: V_{1} \rightarrow W_{1}$ and $f_{2}: V_{2} \rightarrow W_{2}$ two linear maps. Use the question 3 to define a "natural" linear map $f_{1} \otimes f_{2}: V_{1} \otimes W_{1} \rightarrow V_{2} \otimes W_{2}$. If M_{1} and M_{2} are matrices of f_{1} and f_{2} in some bases, describe a matrix representing $f_{1} \otimes f_{2}$ in some appropriate bases.

In order to use the question 3, we should find a "natural" bilinear map from $V_{1} \times V_{2}$ to $W_{1} \otimes W_{2}$. The composition of the map $\widetilde{f_{1} \times f_{2}}: V_{1} \otimes V_{2} \rightarrow W_{1} \times W_{2}$ with the map $\phi: W_{1} \times W_{2} \rightarrow W_{1} \otimes W_{2}$ is exactly what we want, and this defines a linear map from $V_{1} \otimes V_{2}$ to $W_{1} \otimes W_{2}$. Furthermore one easily checks that:

$$
f_{1} \otimes f_{2}(x \otimes y)=f_{1}(x) \otimes f_{2}(y)
$$

Let us fix some bases B_{1}, B_{2}, C_{1} and C_{2} for V_{1}, V_{2}, W_{1} and W_{2}. A base of $V_{1} \otimes V_{2}$ is given by $B_{1} \times B_{2}$ with the lexicographical order and a base of $W_{1} \otimes W_{2}$ is given by $C_{1} \times C_{2}$ with the lexicographical order. If V_{1} and V_{2} have dimension m_{1} and m_{2} and W_{1} and W_{2} have dimension n_{1} and n_{2}, the matrix M_{1} of f_{1} has size $m_{1} \times n_{1}$, the matrix M_{2} of f_{2} has size $m_{2} \times n_{1}$ and the martix $M_{1 \otimes 2}$ of $f_{1} \otimes f_{2}$ has dimension $m_{1} m_{2} \times n_{1} n_{2}$ and is obtained by replacing every entry λ of the matrix M_{1} by the matrix $\lambda \cdot M_{2}$.

Problem 2 (Group algebra). Let \mathbb{K} be a field and G a group. Let $\mathbb{K}[G]$ denote the \mathbb{K}-vector space with basis G.

1. Show that the multiplication of the group G induces a multiplication on $\mathbb{K}[G]$ making this vector space an (associative) \mathbb{K}-algebra. It is called the group algebra of G. Is $\mathbb{K}[G]$ unital? For which groups G is the algebra $\mathbb{K}[G]$ comutative?

The multiplication of $\mathbb{K}[G]$ is commutative if and only if the group G is abelian.
2. Let n be a positive integer and let us denote by A_{n} the set of matrices with shape

$$
\left(\begin{array}{ccccc}
a_{1} & a_{2} & \ldots & a_{n-1} & a_{n} \\
a_{n} & a_{1} & a_{2} & \ldots & a_{n-1} \\
a_{n-1} & a_{n} & a_{1} & \ddots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
a_{2} & \ldots & \ldots & a_{n} & a_{1}
\end{array}\right)
$$

for $a_{1}, \ldots a_{n}$ elements of \mathbb{K}. Prove that A_{n} is an algebra isomorphic to a group algebra.
It is isomorphic to the algebra $\mathbb{K}[\mathbb{Z} / n \mathbb{Z}]$: an isomorphism is completely determined by the data:

$$
1 \cdot \overline{1} \mapsto\left(\begin{array}{ccccc}
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & 0 & \vdots \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & \ddots & \ddots & \ddots & 1 \\
1 & 0 & \ldots & \ldots & 0
\end{array}\right)
$$

3. We denote by $\mathbb{K}\left[X^{ \pm 1}\right]$ the set of Laurent polynomials over \mathbb{K}. It is defined by the following formula:

$$
\mathbb{K}\left[X^{ \pm 1}\right]=\left\{f(X) \in \mathbb{K}(X) \mid \exists l \in \mathbb{N} \text { such that } X^{l} f(X) \in \mathbb{K}[X]\right\}
$$

Prove that $\mathbb{K}\left[X^{ \pm}\right]$is isomorphic to a group algebra.
It is isomorphic to $\mathbb{K}[\mathbb{Z}]$ via sending $\lambda \cdot k$ to λX^{k}.
4. Suppose that G is finite of order n and \mathbb{K} is of characteristic 0 . Show that $\mathbb{K}[G]$ decomposes as a direct sum of an ideal of dimension $n-1$ and an ideal of dimension 1 .

We consider the map

$$
\begin{array}{cccc}
\phi: & \mathbb{K}[G] & \rightarrow & \mathbb{K} \\
\sum_{g \in G} \lambda_{g} g & \stackrel{y}{\mapsto} & \sum_{g} \lambda_{g} . &
\end{array}
$$

This is a morphism of algebras, hence its kernel is an ideal. It is clear that it has dimension $n-1$. The other ideal we are looking for is generated by $\sum_{g \in G} g$ and consists of the element of $\mathbb{K}[G]$ of the form $\lambda \sum_{g \in G} g$ with λ element of \mathbb{K}. They are in direct sum since every element of $\mathbb{K}[G]$ can be decomposed (and the dimensions fit):

$$
\sum_{g} \lambda_{g} g=\left(\sum_{g} \lambda_{g} g-\frac{1}{n}\left(\sum_{g} \lambda_{g}\right)\left(\sum_{g} g\right)\right)+\frac{1}{n}\left(\sum_{g} \lambda_{g}\right)\left(\sum_{g} g\right)
$$

Problem 3. We consider the category \mathcal{Z} given by the following data whose objects are compact oriented 0 -manifold (ie collection of points with signs) and whose hom-sets are given by the following formula:
$\operatorname{Hom}\left(N_{1}, N_{2}\right)= \begin{cases}\left\{f_{M_{1}, M_{2}}\right\} & \text { if there exists a compact oriented 1-manifold } W \text { such that } \partial W \text { is diffeomorphic to }-M_{1} \sqcup M_{2}, \\ \emptyset & \text { else. }\end{cases}$

1. Prove that every morphism is an isomorphism.

Done during the exercise session.
2. Give the isomorphism classes of the category \mathcal{Z}.

If N is a compact oriented 0-dimensional manifold, let us denote by $n(N) \in \mathbb{Z}$ the number of point of N counted with orientation (ie the number of positive points minus the number of negative points). We claim that N_{1} and N_{2} are isomorphic if and only if $n\left(N_{1}\right)=n\left(N_{2}\right)$. First, let us consider two objects N_{1} and N_{2}, such that $n\left(N_{1}\right)=n\left(N_{2}\right)$. The manifold $-N_{1} \sqcup N_{2}$ has as many negative points as positive points because $n\left(-N_{1} \sqcup N_{2}\right)=-n\left(N_{1}\right)+n\left(N_{2}\right)=0$, we label them m_{i} and p_{i} for $1 \leq i \leq k$. The manifold $\bigsqcup_{i=1}^{k}[0,1]$ and the obvious identification of the boundary with $-N_{1} \sqcup N_{2}$ proves that N_{1} and N_{2} are equivalent. The other direction is similar: let N_{1} and N_{2} be two isomorphic objects. It means that there exists W a compact oriented 1-manifold such that ∂W is diffeomorphic to $-N_{1} \sqcup N_{2}$ but W is a collection of circles and intervals, in particular its boundary has as many positive points as negatives points. This gives $n\left(N_{1}\right)=n\left(N_{2}\right)$.
3. What happens if we consider the same category but without the orientability / orientation conditions ?

This leads to $\mathbb{Z} / 2 \mathbb{Z}$.

Problem 4. Let n be an integer greater than or equal to 2 . In this problem, we will prove that the symmetric group S_{n} has the following presentation ${ }^{1}$:

$$
\left\langle\begin{array}{l|l}
\tau_{1}, \ldots, \tau_{n-1} & \text { for } 1 \leq i \leq n-1 \\
\tau_{i}^{2}=1 & \text { for } 1 \leq i, j \leq n-1 \text { and }|i-j| \geq 2 \\
\tau_{i} \tau_{j}=\tau_{j} \tau_{i} & \text { for } 1 \leq i \leq n-2 \\
\tau_{i} \tau_{i+1} \tau_{i}=\tau_{i+1} \tau_{i} \tau_{i+1}
\end{array}\right\rangle
$$

For the moment let us denote by G_{n} the group given by the presentation.

1. Prove that there exists a surjective homomorphism φ from G_{n} to S_{n}.

Done in the Exercise session.
2. We want to prove that φ is an isomorphism. Why is it enough to show that the order or $G_{n} \leq n$! ?

Done in the Exercise session.
3. Prove that every element of G_{n} has an expression as a product of τ_{i} with at most one τ_{n-1}.

This is done by induction on n. If $n=2$ this is clear since in this case $G_{n} \simeq \mathbb{Z} / 2 \mathbb{Z}$. Suppose now that the statement holds for n. Let σ be an element of G_{n+1} and let w be a word in the τ_{i} such that $\bar{w}=\sigma$ and such that the number of τ_{n} is minimal. Suppose that this number is greater than or equal to 2. Then we can write: $w=w_{1} \tau_{n} w_{2} \tau_{n}$ with w_{2} a word in the letter $\tau_{1}, \ldots, \tau_{n-1}$. The word w_{2} represent an element of G_{n} and this element has an expression w_{2}^{\prime} as a product of τ_{i} with at most one τ_{n-1}. Hence we can write: $w=w_{1} \tau_{n} w_{2}^{\prime} \tau_{n}$. Now using the relations of the presentation of G_{n}, we found a contradiction (done in the exercise session).
4. Consider the canonical injection $\iota: G_{n-1} \hookrightarrow G_{n}$ and prove that the sets

$$
\iota\left(G_{n-1}\right), \tau_{n-1} \iota\left(G_{n-1}\right), \tau_{n-2} \tau_{n-1} \iota\left(G_{n-1}\right), \ldots, \tau_{n-i} \cdots \tau_{n-1} \iota\left(G_{n-1}\right), \ldots, \tau_{1} \cdots \tau_{n-1} \iota\left(G_{n-1}\right)
$$

cover G_{n}.
5. Conclude.

[^0]
[^0]: ${ }^{1}$ It is the same presentation as the one of the braid group B_{n} with the additional relations $\tau_{i}^{2}=1$. One says that B_{n} is the Artin group and S_{n} the Coxeter group of the same Coxeter system.

