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Problem 1 (Quotient modules). Let A be a unital K-algebra1 and M,N modules2 over A.

1. Let U ⊂ M a submodule. Show that the quotient vector space M/U is endowed with a natural
structure of an A-module by

a.(x+ U) := (a.x) + U .

Show that the K-linear map π : M →M/U, x 7→ x+ U is A-linear.

2. Let f : M → N be a morphism of A-modules and show that there is a unique A-linear map
F : M/U → N with F ◦ π = f , if U ⊂ ker(f).

3. Let g : M → N be a surjective morphism of A-modules. Show that ker(g) is a submodule of M
and that the A-modules M/ ker(g) and N are isomorphic.

4. The algebra A can be itself considered as a left (resp. right) A-module (how?). A submodule of A is
called a left (resp. right) ideal. If a subspace of A is both a left and a right ideal, we say that it is a
two sided ideal. Show that the quotient vector space A/I is a K-algebra with (a+I)·(b+I) := ab+I,
if and only if I is a two-sided ideal.

Problem 2 (Projective modules). Let A be a unital K-algebra. A (left) A-module P is projective if:
for every pair of A-modules (M,N), every surjective A-linear map f : M → N and every A-linear map
g : P → N , there exists an A-linear map h : P → M such that: g = f ◦ h. This is summarized by the
following diagram:

M

f
����

P

∃h
>>

g
// N

1. A A-module is free if it is isomorphic to a (possibly infinite) direct sum of copies of A (ie if it admits
a A-base). Prove that if a A-module is free, it is projective.

2. In this question, we consider B the set of diagonal 2 × 2 matrices with coefficient in K endowed
with the classical matrix product. It is obviously a K-algebra. We consider P the sub-module of B
which consist of matrices with their upper-lefter coefficient equal to 0. Is P free? Is P is projective?

3. Let P be a projective module. Construct a free module F and a surjective A-linear map π : F → P .
Prove that P is isomorphic to a direct summand of F .

4. Prove that if a A-module is isomorphic to a direct summand of a free A-modules, it is projective.

Problem 3. Let G be a finite group, C[G] its associated C-algebra. A C[G]-module is also called a
representation of G (:= Darstellung von G).

1. Let M be a finite dimensional C[G]-module. Prove that the C[G]-module structure of M induces
a group homomorphism ρM : G→ End(M). Prove the reciprocal statement: if V is a vector space
and ρ : G → End(V ) a group homomorphism, prove that we can endow V with a structure of
C[G]-module.

1If not otherwise specified, in the exercises sheets, an algebra is unital.
2If not otherwise specified, in the exercises sheets, a module is a left module.
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2. Let M be a finite dimensional C[G]-module and N a sub-module of N . Let us consider N ′ a
supplement of M as a vector space (in general N ′ is NOT a C[G]-module), and denote p : M → N ′

the projection on N ′. By using the map

π :=
1

#G

∑
g∈G

ρM (g) ◦ p ◦ ρM (g)−1,

prove3 that we can find a submodule N ′′ of M such that M = N ⊕N ′′.

3. Let M1 and M2 be two simple C[G]-module and f : M1 → M2 a morphism of C[G]-modules.
Suppose that f is different from 0. Prove that M1 and M2 are isomorphic.

4. With the same notations and the same hypothesis as the previous question, and by considering the
eigenvalues of f , prove that f is an homothety4.

Problem 4 (Garside structure of the braid group). Let n ≥ 3, in this problem, we will study some
combinatorial aspect of the braid group presented in the lecture:

Bn =

〈
σ1, . . . , σn−1

∣∣∣∣ σiσj = σjσi for 1 ≤ i, j ≤ n− 1 and |i− j| ≥ 2
σiσi+1σi = σi+1σiσi+1 for 1 ≤ i ≤ n− 2

σi

〉
.

It is important to distinguish two notion: a word5 in the letters (σi)1≤i≤n−1 and (σ−1j )1≤j≤n−1 represents
an element of Bn, but one element of Bn is represented by many (actually infinitely many) words. Two
words are equivalent if they represent the same word. A word is positive if it is written only with the
letters (σi)1≤i≤n−1. An element is positive if it can be represented by a positive word. Two words w and
t are positively equivalent if they are positive and if one can go from one to the other by a sequence of
positive words each of them obtained from the previous one by one of the following operations on letters
(such a sequence is called a chain):

σiσj −→ σjσi for 1 ≤ i, j ≤ n− 1 and |i− j| ≥ 2,

σiσi+1σi −→ σi+1σiσi+1 for 1 ≤ i ≤ n− 2,

σi+1σiσi+1 −→ σiσi+1σi for 1 ≤ i ≤ n− 2,

In this case we write w
.
= t (and such a notation should indicate that both w and t are positive) and if a

chain from w to t has length l, we say that w and t are l-close.

1. Define the notion of length on the set of words. Show we can define a notion of length on the set
of positive element.

2. If w is a word, we denote by rev(w) the word obtained by reading w from right to left (eg if
w = σ1σ2σ3, then rev(w) = σ3σ2σ1). Let w and t be two words, show that rev(wt) = rev(t)rev(w).
Prove that w

.
= t if and only if rev(w)

.
= rev(t).

3. We want to prove the following theorem:

Theorem 1 (Garside, 1965). Let i and j be two integers of [1, n − 1] and w and t two positive
words such that σiw

.
= σjt.

• If i = j, then w
.
= t.

• If |i− j| ≥ 2, then there exists a positive word z such that w = σjz and t = σjz.

• If |i− j| = 1, then there exists a positive word z such that w = σjσiz and t = σjσiz.

If k and m are two integers, we denote by Hk the theorem restricted to the words of length equal to
k, and we denote by Hm

k the theorem restricted to the words of length k and which are m-close.

3If A is an algebra, we say that a A-module N is simple if N does not contain non-trivial sub-modules. And that an
object is indecomposable if it cannot be expressed as a direct sum of two sub-modules. This question shows that in the case
of group algebras for finite groups, these two notions coincide (why?), this is NOT true in general.

4This is Schur’s lemma. Schur (1875 – 1945) was a German mathematician.
5the empty word is a word, usually it is denoted by ε.
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4. Prove H0 and H1. Prove the H0
k and H1

k for every k.

5. Let k and m be integers greater than or equal to 2. We want to prove Hm
k . Let us suppose that

Hk′ holds for every integer k′ smaller than k and that Hm′

k holds for every m′ smaller than m. Let
us consider two positive words w and t of length and i and j two integers in [1, n− 1]. We suppose
that σiw

.
= σjt and that this two words are m-close. We consider a chain from σiw to σjt of length

m. We can pick up an intermediate word σpu in the chain such that σiw and σpu are m′-close with
m′ < m and σpu and σjt are m′′-close with m′′ < m. List all the possible configurations of the
indices i, j and p.

6. Choose two6 of these configurations and prove that the corresponding statement of the theorem for
the words w and t.

7. We now admit the theorem 1, prove that the same theorem holds when the multiplication by the
generators are on the right of the words instead of the left.

8. Prove the following theorem:

Theorem 2. If u
.
= v, r

.
= s and uwr

.
= vts, then w

.
= t.

Actually Garside showed that, in the braid groups, there is a well defined notion of lower common multiple
compatible with a certain order. This is a very strong and special property. From this property one can
deduce many result on the braid groups.

Problem 5. A functor F : C → D is essentially surjective if for every object W of D, there exists an
object U of C such that F (U) 'W .

A functor F : C → D is faithful (resp. fully faithful) if for every pair of objects (U1, U2) of C, the map
F : Hom(U1, U2)→ Hom(F (U1), F (U2)) is injective (resp. bijective).

A functor F : C → D is an equivalence of categories if there exists a functor G : D → C and two
natural isomorphisms η : idD → F ◦G and θ : G ◦ F → idC .

In this problem, we intend to prove the following theorem:

Theorem 3. A functor F : C → D is an equivalence of categories if and only if it is fully faithful and
essentially surjective.

1. We first suppose that F is an equivalence of categories. Prove that F is essentially surjective.

2. Let U1 and U2 be two objects of C. Show that θ (we use the notations introduced in the definitions)
induces a bijection between Hom(G ◦F (U1), G ◦F (U2)) and Hom(U1, U2). Prove that F is faithful.
Prove that G is faithful.

3. Let U1 and U2 be two objects of C and g : F (U1) → F (U2) a morphism of C. Compute F (θ(U2) ◦
G(g) ◦ θ(U1)−1). Prove that F is fully faithful.

4. We now suppose that F is essentially surjective and fully faithful. We want to define a functor
G : D → C and two natural isomorphisms η : idD → F ◦G and θ : G◦F → idC . For every object W
of D we choose7 an object G(W ) of C such that F (G(W )) is isomorphic to W and we choose8 an
isomorphism η(W ) : W → F (G(W )). If g is a morphism in the category D, what is the “natural”
definition of G(g) ? Prove that with this definition, G is indeed a functor and η : idD → F ◦ G a
natural transformation.

5. What is the “natural” definition of θ : G ◦ F → idC ? Prove that F is an equivalence of category.

6The proof are very similar for every configurations. . .
7We use the axiom of choice.
8We use it again.
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