

PD Dr. Ralf Holtkamp Prof. Dr. C. Schweigert Hopf algebras Winter term 2014/2015

Sheet 2

Problem 1 (Quotient modules). Let A be a unital \mathbb{K} -algebra¹ and M, N modules² over A.

1. Let $U \subset M$ a submodule. Show that the quotient vector space M/U is endowed with a natural structure of an A-module by

$$a.(x+U) := (a.x) + U$$

Show that the K-linear map $\pi: M \to M/U, x \mapsto x + U$ is A-linear.

- 2. Let $f : M \to N$ be a morphism of A-modules and show that there is a unique A-linear map $F: M/U \to N$ with $F \circ \pi = f$, if $U \subset \ker(f)$.
- 3. Let $g: M \to N$ be a surjective morphism of A-modules. Show that ker(g) is a submodule of M and that the A-modules $M/\ker(g)$ and N are isomorphic.
- 4. The algebra A can be itself considered as a left (resp. right) A-module (how?). A submodule of A is called a *left (resp. right) ideal*. If a subspace of A is both a left and a right ideal, we say that it is a *two sided ideal*. Show that the quotient vector space A/I is a K-algebra with $(a+I) \cdot (b+I) := ab+I$, if and only if I is a two-sided ideal.

Problem 2 (Projective modules). Let A be a unital K-algebra. A (left) A-module P is projective if: for every pair of A-modules (M, N), every surjective A-linear map $f : M \to N$ and every A-linear map $g : P \to N$, there exists an A-linear map $h : P \to M$ such that: $g = f \circ h$. This is summarized by the following diagram:

$$P \xrightarrow{\exists h \swarrow^{\mathscr{A}} | f}{\xrightarrow{g} N} N$$

- 1. A A-module is *free* if it is isomorphic to a (possibly infinite) direct sum of copies of A (ie if it admits a A-base). Prove that if a A-module is free, it is projective.
- 2. In this question, we consider B the set of diagonal 2×2 matrices with coefficient in K endowed with the classical matrix product. It is obviously a K-algebra. We consider P the sub-module of B which consist of matrices with their upper-lefter coefficient equal to 0. Is P free? Is P is projective?
- 3. Let P be a projective module. Construct a free module F and a surjective A-linear map $\pi : F \to P$. Prove that P is isomorphic to a direct summand of F.
- 4. Prove that if a A-module is isomorphic to a direct summand of a free A-modules, it is projective.

Problem 3. Let G be a finite group, $\mathbb{C}[G]$ its associated \mathbb{C} -algebra. A $\mathbb{C}[G]$ -module is also called a representation of G (:= Darstellung von G).

1. Let M be a finite dimensional $\mathbb{C}[G]$ -module. Prove that the $\mathbb{C}[G]$ -module structure of M induces a group homomorphism $\rho_M : G \to \operatorname{End}(M)$. Prove the reciprocal statement: if V is a vector space and $\rho : G \to \operatorname{End}(V)$ a group homomorphism, prove that we can endow V with a structure of $\mathbb{C}[G]$ -module.

¹If not otherwise specified, in the exercises sheets, an algebra is unital.

²If not otherwise specified, in the exercises sheets, a module is a left module.

2. Let M be a finite dimensional $\mathbb{C}[G]$ -module and N a sub-module of N. Let us consider N' a supplement of M as a vector space (in general N' is NOT a $\mathbb{C}[G]$ -module), and denote $p: M \to N'$ the projection on N'. By using the map

$$\pi := \frac{1}{\#G} \sum_{g \in G} \rho_M(g) \circ p \circ \rho_M(g)^{-1},$$

prove³ that we can find a submodule N'' of M such that $M = N \oplus N''$.

- 3. Let M_1 and M_2 be two simple $\mathbb{C}[G]$ -module and $f : M_1 \to M_2$ a morphism of $\mathbb{C}[G]$ -modules. Suppose that f is different from 0. Prove that M_1 and M_2 are isomorphic.
- 4. With the same notations and the same hypothesis as the previous question, and by considering the eigenvalues of f, prove that f is an homothety⁴.

Problem 4 (Garside structure of the braid group). Let $n \ge 3$, in this problem, we will study some combinatorial aspect of the braid group presented in the lecture:

$$B_n = \left\langle \sigma_1, \dots, \sigma_{n-1} \middle| \begin{array}{cc} \sigma_i \sigma_j = \sigma_j \sigma_i & \text{for } 1 \le i, j \le n-1 \text{ and } |i-j| \ge 2\\ \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1} & \text{for } 1 \le i \le n-2 \end{array} \right\rangle.$$

It is important to distinguish two notion: a $word^5$ in the letters $(\sigma_i)_{1 \le i \le n-1}$ and $(\sigma_j^{-1})_{1 \le j \le n-1}$ represents an *element* of B_n , but one element of B_n is represented by many (actually infinitely many) words. Two words are *equivalent* if they represent the same word. A word is *positive* if it is written only with the letters $(\sigma_i)_{1 \le i \le n-1}$. An element is *positive* if it can be represented by a positive word. Two words w and t are *positively equivalent* if they are positive and if one can go from one to the other by a sequence of positive words each of them obtained from the previous one by one of the following operations on letters (such a sequence is called a *chain*):

$$\begin{aligned} \sigma_i \sigma_j &\longrightarrow \sigma_j \sigma_i & \text{for } 1 \leq i, j \leq n-1 \text{ and } |i-j| \geq 2, \\ \sigma_i \sigma_{i+1} \sigma_i &\longrightarrow \sigma_{i+1} \sigma_i \sigma_{i+1} & \text{for } 1 \leq i \leq n-2, \\ \sigma_{i+1} \sigma_i \sigma_{i+1} &\longrightarrow \sigma_i \sigma_{i+1} \sigma_i & \text{for } 1 \leq i \leq n-2, \end{aligned}$$

In this case we write $w \doteq t$ (and such a notation should indicate that both w and t are positive) and if a chain from w to t has length l, we say that w and t are l-close.

- 1. Define the notion of length on the set of words. Show we can define a notion of length on the set of positive element.
- 2. If w is a word, we denote by $\operatorname{rev}(w)$ the word obtained by reading w from right to left (eg if $w = \sigma_1 \sigma_2 \sigma_3$, then $\operatorname{rev}(w) = \sigma_3 \sigma_2 \sigma_1$). Let w and t be two words, show that $\operatorname{rev}(wt) = \operatorname{rev}(t)\operatorname{rev}(w)$. Prove that $w \doteq t$ if and only if $\operatorname{rev}(w) \doteq \operatorname{rev}(t)$.
- 3. We want to prove the following theorem:

Theorem 1 (Garside, 1965). Let *i* and *j* be two integers of [1, n - 1] and *w* and *t* two positive words such that $\sigma_i w \doteq \sigma_j t$.

- If i = j, then $w \doteq t$.
- If $|i-j| \ge 2$, then there exists a positive word z such that $w = \sigma_j z$ and $t = \sigma_j z$.
- If |i j| = 1, then there exists a positive word z such that $w = \sigma_j \sigma_i z$ and $t = \sigma_j \sigma_i z$.

If k and m are two integers, we denote by H_k the theorem restricted to the words of length equal to k, and we denote by H_k^m the theorem restricted to the words of length k and which are m-close.

 $^{{}^{3}}$ If A is an algebra, we say that a A-module N is *simple* if N does not contain non-trivial sub-modules. And that an object is *indecomposable* if it cannot be expressed as a direct sum of two sub-modules. This question shows that in the case of group algebras for finite groups, these two notions coincide (why?), this is NOT true in general.

 $^{^{4}}$ This is Schur's lemma. Schur (1875 – 1945) was a German mathematician.

⁵the empty word is a word, usually it is denoted by ε .

- 4. Prove H_0 and H_1 . Prove the H_k^0 and H_k^1 for every k.
- 5. Let k and m be integers greater than or equal to 2. We want to prove H_k^m . Let us suppose that $H_{k'}$ holds for every integer k' smaller than k and that $H_k^{m'}$ holds for every m' smaller than m. Let us consider two positive words w and t of length and i and j two integers in [1, n 1]. We suppose that $\sigma_i w \doteq \sigma_j t$ and that this two words are m-close. We consider a chain from $\sigma_i w$ to $\sigma_j t$ of length m. We can pick up an intermediate word $\sigma_p u$ in the chain such that $\sigma_i w$ and $\sigma_p u$ are m'-close with m'' < m. List all the possible configurations of the indices i, j and p.
- 6. Choose two⁶ of these configurations and prove that the corresponding statement of the theorem for the words w and t.
- 7. We now admit the theorem 1, prove that the same theorem holds when the multiplication by the generators are on the right of the words instead of the left.
- 8. Prove the following theorem:

Theorem 2. If $u \doteq v$, $r \doteq s$ and $uwr \doteq vts$, then $w \doteq t$.

Actually Garside showed that, in the braid groups, there is a well defined notion of lower common multiple compatible with a certain order. This is a very strong and special property. From this property one can deduce many result on the braid groups.

Problem 5. A functor $F : \mathcal{C} \to \mathcal{D}$ is essentially surjective if for every object W of \mathcal{D} , there exists an object U of \mathcal{C} such that $F(U) \simeq W$.

A functor $F : \mathcal{C} \to \mathcal{D}$ is faithful (resp. fully faithful) if for every pair of objects (U_1, U_2) of C, the map $F : \operatorname{Hom}(U_1, U_2) \to \operatorname{Hom}(F(U_1), F(U_2))$ is injective (resp. bijective).

A functor $F : \mathcal{C} \to \mathcal{D}$ is an *equivalence of categories* if there exists a functor $G : \mathcal{D} \to \mathcal{C}$ and two natural isomorphisms $\eta : \mathrm{id}_{\mathcal{D}} \to F \circ G$ and $\theta : G \circ F \to \mathrm{id}_{\mathcal{C}}$.

In this problem, we intend to prove the following theorem:

Theorem 3. A functor $F : \mathcal{C} \to \mathcal{D}$ is an equivalence of categories if and only if it is fully faithful and essentially surjective.

- 1. We first suppose that F is an equivalence of categories. Prove that F is essentially surjective.
- 2. Let U_1 and U_2 be two objects of C. Show that θ (we use the notations introduced in the definitions) induces a bijection between $\operatorname{Hom}(G \circ F(U_1), G \circ F(U_2))$ and $\operatorname{Hom}(U_1, U_2)$. Prove that F is faithful. Prove that G is faithful.
- 3. Let U_1 and U_2 be two objects of \mathcal{C} and $g: F(U_1) \to F(U_2)$ a morphism of \mathcal{C} . Compute $F(\theta(U_2) \circ G(g) \circ \theta(U_1)^{-1})$. Prove that F is fully faithful.
- 4. We now suppose that F is essentially surjective and fully faithful. We want to define a functor $G: \mathcal{D} \to \mathcal{C}$ and two natural isomorphisms $\eta: \operatorname{id}_{\mathcal{D}} \to F \circ G$ and $\theta: G \circ F \to \operatorname{id}_{\mathcal{C}}$. For every object W of \mathcal{D} we choose⁷ an object G(W) of \mathcal{C} such that F(G(W)) is isomorphic to W and we choose⁸ an isomorphism $\eta(W): W \to F(G(W))$. If g is a morphism in the category \mathcal{D} , what is the "natural" definition of G(g)? Prove that with this definition, G is indeed a functor and $\eta: \operatorname{id}_{\mathcal{D}} \to F \circ G$ a natural transformation.
- 5. What is the "natural" definition of $\theta: G \circ F \to id_{\mathcal{C}}$? Prove that F is an equivalence of category.

⁶The proof are very similar for every configurations...

⁷We use the axiom of choice.

⁸We use it again.