

PD Dr. Ralf Holtkamp Prof. Dr. C. Schweigert Hopf algebras Winter term 2014/2015

Sheet 2

Problem 1 (Quotient modules). Let A be a unital \mathbb{K} -algebra¹ and M, N modules² over A.

1. Let $U \subset M$ a submodule. Show that the quotient vector space M/U is endowed with a natural structure of an A-module by

$$a.(x + U) := (a.x) + U.$$

Show that the K-linear map $\pi: M \to M/U, x \mapsto x + U$ is A-linear.

- 2. Let $f: M \to N$ be a morphism of A-modules and show that there is a unique A-linear map $F: M/U \to N$ with $F \circ \pi = f$, if $U \subset \ker(f)$.
- 3. Let $g: M \to N$ be a surjective morphism of A-modules. Show that $\ker(g)$ is a submodule of M and that the A-modules $M/\ker(g)$ and N are isomorphic.
- 4. The algebra A can be itself considered as a left (resp. right) A-module (how?). A submodule of A is called a *left (resp. right) ideal*. If a subspace of A is both a left and a right ideal, we say that it is a two sided ideal. Show that the quotient vector space A/I is a \mathbb{K} -algebra with $(a+I)\cdot (b+I):=ab+I$, if and only if I is a two-sided ideal.

Problem 2 (Projective modules). Let A be a unital \mathbb{K} -algebra. A (left) A-module P is projective if: for every pair of A-modules (M,N), every surjective A-linear map $f:M\to N$ and every A-linear map $g:P\to N$, there exists an A-linear map $h:P\to M$ such that: $g=f\circ h$. This is summarized by the following diagram:

$$P \xrightarrow{\exists h} N \qquad M$$

$$\downarrow f$$

$$\downarrow f$$

$$N$$

1. A A-module is *free* if it is isomorphic to a (possibly infinite) direct sum of copies of A (ie if it admits an A-base). Prove that if a A-module is free, it is projective.

Solution. Let F be a free A-module and let $X = (x_i)_{i \in I}$ an A-base of F. Consider a diagram:

$$F \xrightarrow{q} N$$

We might define h on the element of X (there is then one and only one way to extend it into a A-module map). For each element x in X we choose one pre-image of g(x) by f and we define it to be the image of x by h. It is straightforward to check that this gives the A-module map what we wanted. Note that we used the axiom of choice.

¹If not otherwise specified, in the exercises sheets, an algebra is unital.

²If not otherwise specified, in the exercises sheets, a module is a left module.

2. In this question, we consider B the set of diagonal 2×2 matrices with coefficient in \mathbb{K} endowed with the classical matrix product. It is obviously a \mathbb{K} -algebra. We consider P the sub-module of B which consist of matrices with their upper-lefter coefficient equal to 0. Is P free? Is P is projective?

Solution. The module P is not free, because if it would be, its \mathbb{K} -dimension would be a multiple of the \mathbb{K} -dimension of B and this is not the case. Let us show that P is a projective A-module. Let us denote by e_1 and e_2 the two elements of A given by:

$$e_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
 and $e_2 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$.

and b the element of P given by:

$$p = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$$

Let us consider the diagram:

$$F \xrightarrow{q} N$$

let m be a pre-image of g(p) by f. We define $h(\lambda p) = \lambda e_2 m$. It is clearly a A-module map (because $e_1e_2=0$) and we have: $f(h(p))=f(e_2m)=e_2f(m)=e_2g(p)=g(e_2p)=g(p)$. Hence P is projective. \Box

3. Let P be a projective module. Construct a free module F and a surjective A-linear map $\pi: F \to P$. Prove that P is isomorphic to a direct summand of F.

Solution. We consider the free module F with A-base given by all the elements of P (this is very different from the module P) and the surjective A-map π defined by $\pi(x) = x$ for element of P (this is NOT the identity map!). We consider the diagram

$$P \xrightarrow{\exists h} P$$

$$\downarrow^{\pi}$$

$$P \xrightarrow{\operatorname{id}_{P}} P$$

Let us prove that $F \simeq P \oplus \ker \pi$: the map ϕ_1 and ϕ_2 are clearly A-module maps and inverse from each others:

$$\phi_1: F \to P \oplus \ker \pi \qquad \phi_2: P \oplus \ker \pi \to F$$
$$x \mapsto (\pi(x), x - h \circ \pi(x)) \qquad (y_1, y_2)x \mapsto h(y_1) + y_2$$

4. Prove that if a A-module is isomorphic to a direct summand of a free A-modules, then it is projective.

Solution. Let P and Q be two A-modules such that $P \oplus Q = F$ is a free A-module. We will show that P is projective. Let us consider a diagram:

$$\begin{array}{c}
M \\
?\exists h \\
/ \\
P \xrightarrow{a} N
\end{array}$$

We want to construct the map h. Let us denote by $\pi: P \oplus Q \to P$ (resp. $\iota: P \to P \oplus Q$) the canonical projection (resp. injection). Thanks to the first question, we have:

One easily check that defining $h = \tilde{h}\iota$ make the first diagram commutes (because $\iota \circ \pi = \mathrm{id}_P$).

Problem 3. Let G be a finite group, $\mathbb{C}[G]$ its associated \mathbb{C} -algebra. A $\mathbb{C}[G]$ -module is also called a representation of G (:= Darstellung von G).

- 1. Let M be a finite dimensional $\mathbb{C}[G]$ -module. Prove that the $\mathbb{C}[G]$ -module structure of M induces a group homomorphism $\rho_M : G \to \operatorname{End}(M)$. Prove the reciprocal statement: if V is a vector space and $\rho : G \to \operatorname{End}(V)$ a group homomorphism, prove that we can endow V with a structure of $\mathbb{C}[G]$ -module.
- 2. Let M be a finite dimensional $\mathbb{C}[G]$ -module and N a sub-module of N. Let us consider N' a supplement of M as a vector space (in general N' is NOT a $\mathbb{C}[G]$ -module), and denote $p: M \to N'$ the projection on N'. By using the map

$$\pi := \frac{1}{\#G} \sum_{g \in G} \rho_M(g) \circ p \circ \rho_M(g)^{-1},$$

prove³ that we can find a submodule N'' of M such that $M = N \oplus N''$.

- 3. Let M_1 and M_2 be two simple $\mathbb{C}[G]$ -module and $f: M_1 \to M_2$ a morphism of $\mathbb{C}[G]$ -modules. Suppose that f is different from 0. Prove that M_1 and M_2 are isomorphic.
- 4. With the same notations and the same hypothesis as the previous question, and by considering the eigenvalues of f, prove that f is an homothety⁴.

Problem 4 (Garside structure of the braid group). Let $n \geq 3$, in this problem, we will study some combinatorial aspect of the braid group presented in the lecture:

$$B_n = \left\langle \sigma_1, \dots, \sigma_{n-1} \middle| \begin{array}{l} \sigma_i \sigma_j = \sigma_j \sigma_i & \text{for } 1 \leq i, j \leq n-1 \text{ and } |i-j| \geq 2 \\ \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1} & \text{for } 1 \leq i \leq n-2 \end{array} \right\rangle.$$

It is important to distinguish two notions: a $word^5$ in the letters $(\sigma_i)_{1 \leq i \leq n-1}$ and $(\sigma_j^{-1})_{1 \leq j \leq n-1}$ represents an *element* of B_n , but one element of B_n is represented by many (actually infinitely many) words. Two words are *equivalent* if they represent the same word. A word is *positive* if it is written only with the letters $(\sigma_i)_{1 \leq i \leq n-1}$. An element is *positive* if it can be represented by a positive word. Two words w and

 $^{^3}$ If A is an algebra, we say that a A-module N is simple if N does not contain non-trivial sub-modules. And that an object is indecomposable if it cannot be expressed as a direct sum of two sub-modules. This question shows that in the case of group algebras for finite groups, these two notions coincide (why?), this is NOT true in general.

⁴This is Schur's lemma. Schur (1875 – 1945) was a German mathematician.

⁵the empty word is a word, usually it is denoted by ε .

t are positively equivalent if they are positive and if one can go from one to the other by a sequence of positive words each of them obtained from the previous one by one of the following operations on letters (such a sequence is called a *chain*):

$$\sigma_{i}\sigma_{j} \longrightarrow \sigma_{j}\sigma_{i} \qquad \text{for } 1 \leq i, j \leq n-1 \text{ and } |i-j| \geq 2,$$

$$\sigma_{i}\sigma_{i+1}\sigma_{i} \longrightarrow \sigma_{i+1}\sigma_{i}\sigma_{i+1} \qquad \text{for } 1 \leq i \leq n-2,$$

$$\sigma_{i+1}\sigma_{i}\sigma_{i+1} \longrightarrow \sigma_{i}\sigma_{i+1}\sigma_{i} \qquad \text{for } 1 \leq i \leq n-2,$$

In this case we write w = t (and such a notation should indicate that both w and t are positive) and if a chain from w to t has length l, we say that w and t are l-close.

- 1. Define the notion of length on the set of words. Show we can define a notion of length on the set of positive element.
- 2. If w is a word, we denote by $\operatorname{rev}(w)$ the word obtained by reading w from right to left (eg if $w = \sigma_1 \sigma_2 \sigma_3$, then $\operatorname{rev}(w) = \sigma_3 \sigma_2 \sigma_1$). Let w and t be two words, show that $\operatorname{rev}(wt) = \operatorname{rev}(t)\operatorname{rev}(w)$. Prove that $w \doteq t$ if and only if $\operatorname{rev}(w) \doteq \operatorname{rev}(t)$.
- 3. We want to prove the following theorem:

Theorem 1 (Garside, 1965). Let i and j be two integers of [1, n-1] and w and t two positive words such that $\sigma_i w \doteq \sigma_j t$.

- If i = j, then $w \doteq t$.
- If $|i-j| \ge 2$, then there exists a positive word z such that $w = \sigma_j z$ and $t = \sigma_j z$.
- If |i-j|=1, then there exists a positive word z such that $w=\sigma_j\sigma_iz$ and $t=\sigma_j\sigma_iz$.

If k and m are two integers, we denote by H_k the theorem restricted to the words of length equal to k, and we denote by H_k^m the theorem restricted to the words of length k and which are m-close.

- 4. Prove H_0 and H_1 . Prove the H_k^0 and H_k^1 for every k.
- 5. Let k and m be integers greater than or equal to 2. We want to prove H_k^m . Let us suppose that $H_{k'}$ holds for every integer k' smaller than k and that $H_k^{m'}$ holds for every m' smaller than m. Let us consider two positive words w and t of length and i and j two integers in [1, n-1]. We suppose that $\sigma_i w \doteq \sigma_j t$ and that this two words are m-close. We consider a chain from $\sigma_i w$ to $\sigma_j t$ of length m. We can pick up an intermediate word $\sigma_p u$ in the chain such that $\sigma_i w$ and $\sigma_p u$ are m'-close with m' < m and $\sigma_p u$ and $\sigma_j t$ are m''-close with m'' < m. List all the possible configurations of the indices i, j and p.
- 6. Choose two⁶ of these configurations and prove that the corresponding statement of the theorem for the words w and t.
- 7. We now admit the theorem 1, prove that the same theorem holds when the multiplication by the generators are on the right of the words instead of the left.
- 8. Prove the following theorem:

Theorem 2. If $u \doteq v$, $r \doteq s$ and $uwr \doteq vts$, then $w \doteq t$.

Actually Garside showed that, in the braid groups, there is a well defined notion of lower common multiple compatible with a certain order. This is a very strong and special property. From this property one can deduce many result on the braid groups.

 $^{^6}$ The proof are very similar for every configurations. . .

Problem 5. A functor $F: \mathcal{C} \to \mathcal{D}$ is essentially surjective if for every object W of \mathcal{D} , there exists an object U of \mathcal{C} such that $F(U) \simeq W$.

A functor $F: \mathcal{C} \to \mathcal{D}$ is faithful (resp. fully faithful) if for every pair of objects (U_1, U_2) of C, the map $F: \text{Hom}(U_1, U_2) \to \text{Hom}(F(U_1), F(U_2))$ is injective (resp. bijective).

A functor $F: \mathcal{C} \to \mathcal{D}$ is an equivalence of categories if there exists a functor $G: \mathcal{D} \to \mathcal{C}$ and two natural isomorphisms $\eta: \mathrm{id}_{\mathcal{D}} \to F \circ G$ and $\theta: G \circ F \to \mathrm{id}_{\mathcal{C}}$.

In this problem, we intend to prove the following theorem:

Theorem 3. A functor $F: \mathcal{C} \to \mathcal{D}$ is an equivalence of categories if and only if it is fully faithful and essentially surjective.

1. We first suppose that F is an equivalence of categories. Prove that F is essentially surjective.

Solution. Let W be an object of \mathcal{D} , we want to find an object U of \mathcal{C} such that $F(U) \simeq U$. We consider G(W), $\eta(U)$ gives us an isomorphism between W and F(G(W)), hence F is essentially surjective.

2. Let U_1 and U_2 be two objects of C. Show that θ (we use the notations introduced in the definitions) induces a bijection between $\text{Hom}(G \circ F(U_1), G \circ F(U_2))$ and $\text{Hom}(U_1, U_2)$. Prove that F is faithful. Prove that G is faithful.

Solution. The maps $\theta(U_1)$ (resp. $\theta(U_2)$) is an ismorphism between $G \circ F(U_2)$ and U_2 (resp. $G \circ F(U_1)$ and U_1), hence the map:

$$\begin{array}{cccc} \tilde{\theta}: & \operatorname{Hom}(U_1,U_2) & \to & \operatorname{Hom}(G\circ F(U_1),G\circ F(U_2)) \\ & f & \mapsto & \theta(U_2)^{-1}\circ f\circ \theta(U_1) \end{array}$$

is a bijection. We have the following commutative (why does it commutes?) diagram:

$$\operatorname{Hom}(U_1, U_2) \xrightarrow{F} \operatorname{Hom}(F(U_1), F(U_2))$$

$$\downarrow^{\tilde{\theta}} \qquad \downarrow^{G}$$

$$\operatorname{Hom}(G \circ F(U_1), G \circ F(U_2))$$

This proves that $F: \text{Hom}(U_1, U_2) \to \text{Hom}(F(U_1), F(U_2))$ is an injection. This is valid for every pair of objects (U_1, U_2) , hence F is faithful. The functor G is faithful because it is just like F, an equivalence of category.

3. Let U_1 and U_2 be two objects of \mathcal{C} and $g: F(U_1) \to F(U_2)$ a morphism of \mathcal{C} . Compute $F(\theta(U_2) \circ G(g) \circ \theta(U_1)^{-1})$. Prove that F is fully faithful.

Solution. As suggested by the previous question we will use the fact that G is faithful: Let us compute $G(F(\theta(U_2) \circ G(g) \circ \theta(U_1)^{-1}))$. With the previous notation it is equal to $G(F(\tilde{theta}^{-1}(G(d))))$. As previously said, the application induced by $G \circ F$ on $Hom(U_1, U_2)$ is equal to theta. Hence we have:

$$G(F(\theta(U_2) \circ G(g) \circ \theta(U_1)^{-1})) = G(g).$$

From the previous question, we know that G is faithful, hence $g = F(\theta(U_2) \circ G(g) \circ \theta(U_1)^{-1})$. This is valid for any pair of objects (U_1, U_2) and any morphism in $\text{Hom}(U_1, U_2)$. This prove that F is fully faithful.

4. We now suppose that F is essentially surjective and fully faithful. We want to define a functor $G: \mathcal{D} \to \mathcal{C}$ and two natural isomorphisms $\eta: \mathrm{id}_{\mathcal{D}} \to F \circ G$ and $\theta: G \circ F \to \mathrm{id}_{\mathcal{C}}$. For every object W of \mathcal{D} we choose⁷ an object G(W) of \mathcal{C} such that F(G(W)) is isomorphic to W and we choose⁸ an isomorphism $\eta(W): W \to F(G(W))$. If g is a morphism in the category \mathcal{D} , what is the "natural" definition of G(g)? Prove that with this definition, G is indeed a functor and $\eta: \mathrm{id}_{\mathcal{D}} \to F \circ G$ a natural transformation.

Solution. We want G to be a functor and η a natural transformation. This means in particluar, that for any pair of objects (W_1, W_2) and any morphism in $\text{Hom}(W_1, W_2)$, the following diagram should commute:

$$W_1 \xrightarrow{\eta(W_1)} F(G(W_1))$$

$$\downarrow \qquad \qquad \downarrow F(G(g))$$

$$W_2 \xrightarrow{\eta(W_2)} F(G(W_2)).$$

Since the application induced by F on $\operatorname{Hom}(U_1,U_2)$ is bijective and the maps $\eta(W_1)$ and $\eta(W_2)$ are isomorphisms, we can define: $G(g) = F^{-1}(\eta(W_2) \circ g \circ \eta(W_1)^{-1})$. With this definition G is a functor. Indeed, we have $G(\operatorname{id}_{W_1}) = \operatorname{id}_{G(W_1)} if$ and if $g_1 : W_1 \to W_2$ and $g_2 : W_2 \to W_3$:

$$G(g_2 \circ g_1) = F^{-1}(\eta(W_3) \circ g_2 \circ g_1 \eta(W_1)^{-1})$$

$$= F^{-1}(\eta(W_3) \circ g_2 \eta(W_2)^{-1} \circ \eta(W_2) \circ g_1 \eta(W_1)^{-1})$$

$$= F^{-1}(\eta(W_3) \circ g_2 \eta(W_2)^{-1}) \circ F^{-1}(\eta(W_2) \circ g_1 \eta(W_1)^{-1})$$

$$= G(g_2) \circ G(g_1).$$

(Be careful with the different meaning of F^{-1}). furthermore η is a natural transformation (because we did everything for it), and even a natural isomorphism between $id_{\mathcal{D}}$ and $F \circ G$.

5. What is the "natural" definition of $\theta: G \circ F \to \mathrm{id}_{\mathcal{C}}$? Prove that F is an equivalence of category.

Solution. For each object U of C, we should define a morphism $\theta(U)$ from $G \circ F(U)$ to U such that all the squares

$$G \circ F(U_1) \xrightarrow{\theta(W_1)} F(G(W_1))$$

$$F \circ G(f) \downarrow \qquad \qquad \downarrow f$$

$$G \circ F(U_2) \xrightarrow{\theta(U_2)} U_2$$

commutes. The natural way to define $\theta(U)$ is to use, once more, the fact that F is fully faithful: it induces a bijection between $\operatorname{Hom}(G \circ F(U), U)$ and $\operatorname{Hom}(F \circ G \circ F(U), F(U))$. Hence we define: $\theta(U) = F^{-1}(\eta(F(U))^{-1})$. With this definition, η is clearly a natural isomorphisms between $\operatorname{id}_{\mathcal{C}}$ and $G \circ F$.

⁷We use the axiom of choice.

⁸We use it again.