

PD Dr. Ralf Holtkamp Prof. Dr. C. Schweigert Hopf algebras Winter term 2014/2015

Sheet 3

Problem 1. Let $\mathfrak{g}, \mathfrak{h}$ be Lie algebras over a field K. Recall that the enveloping algebra $U(\mathfrak{g})$ of \mathfrak{g} was constructed in the lecture as the quotient of the tensor algebra $T(\mathfrak{g})$ by the two-sided ideal $I \subset T(\mathfrak{g})$ generated by the vectors $x \otimes y - y \otimes x - [x, y]$ with $x, y \in \mathfrak{g}$. The canonical embedding $\iota_{\mathfrak{g}} : \mathfrak{g} \to U(\mathfrak{g})$ was given by the map $x \mapsto x + I$.

1. Show that for every Lie algebra homomorphism $\varphi : \mathfrak{g} \to \mathfrak{h}$ there is a unique morphism $U(\varphi) : U(\mathfrak{g}) \to U(\mathfrak{h})$ of associative algebras, such that $\iota_{\mathfrak{h}} \circ \varphi = U(\varphi) \circ \iota_{\mathfrak{g}}$.

Solution. Let us recall that the universal property of the universal enveloping algebra $(U(\mathfrak{g}), \iota_{\mathfrak{g}})$ of the Lie algebra \mathfrak{g} reads like as follows. For every (unital associative)¹ K-algebra, and every morphism (of Lie algebras) $f : \mathfrak{g} \to A$, there exists a unique unital² morphism (of algebras) $\tilde{f} : U(\mathfrak{g}) \to A$. This can be summarized by the following diagram:

The algebra $U(\mathfrak{h})$ is unital and associative. The map $\iota_{\mathfrak{h}} \circ \phi : \mathfrak{g} \to U(\mathfrak{h})$ is a Lie algebra map, hence, thanks to the universal property we know that there exist a unital map $U(\phi) := \widetilde{\iota_{\mathfrak{h}} \circ \phi}$ such that the following diagram commutes:

This is what we wanted. The uniqueness follows from the fact that, as an algebra, U(h) is generated by $\iota_{\mathfrak{g}}(\mathfrak{g})$ and by 1 and the image hence the images of these element by $U(\phi)$ are determined by the required equality.

2. Let $\varphi : \mathfrak{g} \to \mathfrak{g}'$ and $\psi : \mathfrak{g}' \to \mathfrak{g}''$ be Lie algebra homomorphisms. Show that the equalities $U(\mathrm{id}_{\mathfrak{g}}) = \mathrm{id}_{U(\mathfrak{g})}$ and $U(\psi \circ \varphi) = U(\psi) \circ U(\varphi)$ hold. (Hint: Use the universal property of the enveloping algebra)

Solution. This says that U is a functor from the category of Lie \mathbb{K} -algebra to the category of \mathbb{K} -algebra. The diagram

¹When not mentioned this hypotheses are implicit.

²This means 1 is mapped to 1, and this is NOT an implicit hypothesis!

commutes and the uniqueness of the previous question implies that $id_{U(g)} = U(id_g)$. In the following diagram the two squares commutes:

This implies that the following diagram commutes:

And this gives $U(\psi) \circ U(\varphi) = U(\psi \circ \varphi)$, once more by the uniqueness of the first question.

3. Show the existence of an isomorphism $U(\mathfrak{g}^{\text{opp}}) \to U(\mathfrak{g})^{\text{opp}}$ of associative algebras. (Hint: Show that $U(\mathfrak{g})^{\text{opp}}$ together with the linear map $\iota : \mathfrak{g}^{\text{opp}} \to U(\mathfrak{g})^{\text{opp}}, x \mapsto x + I$ fulfills the universal property of the enveloping algebra of $\mathfrak{g}^{\text{opp}}$.)

Solution. As vector spaces $U(\mathfrak{g})^{\mathrm{opp}}$ and $\mathfrak{g}^{\mathrm{opp}}$ are nothing but identical (I really mean identical, not isomorphic) to $U(\mathfrak{g})$ and \mathfrak{g} . Hence the map $\iota_{\mathfrak{g}}: \mathfrak{g} \to U(\mathfrak{g})$ can be regarded as a map from $\mathfrak{g}^{\mathrm{opp}}$ to $U(\mathfrak{g}^{\mathrm{opp}})$. We will show that the pair $(U(\mathfrak{g})^{\mathrm{opp}}, \iota_{\mathfrak{g}})$ satisfies the universal property of the universal enveloping algebra for $\mathfrak{g}^{\mathrm{opp}}$. This will implies that there exists a unique isomorphism $\lambda: U(\mathfrak{g}^{\mathrm{opp}}) \to U(\mathfrak{g})^{\mathrm{opp}}$ such that $\lambda \circ \iota_{\mathfrak{g}^{\mathrm{opp}}} = \iota_{\mathfrak{g}}$. Let A be a \mathbb{K} -algebra and $f: \mathfrak{g}^{\mathrm{opp}} \to A$ a (Lie algebra) map. This is as well a map of Lie algebra from \mathfrak{g} to A^{opp} , hence there exists a unital map of algebra $\tilde{f}: U(\mathfrak{g}) \to A^{\mathrm{opp}}$ such that $\tilde{f} \circ \iota_{\mathfrak{g}} = f$. The map \tilde{f} can be regarded as a map from $U(\mathfrak{g})^{\mathrm{opp}} \to A$. Hence we have the following commutative diagram:

This proves that $U(\mathfrak{g})^{\text{opp}}$ fulfills the universal property of the universal enveloping algebra $\mathfrak{g}^{\text{opp}}$.

Problem 2. Let G be a finite group, $\mathbb{C}[G]$ its associated \mathbb{C} -algebra. A $\mathbb{C}[G]$ -module is also called a representation of G (:= Darstellung von G).

1. Let M be a finite dimensional $\mathbb{C}[G]$ -module. Prove that the $\mathbb{C}[G]$ -module structure of M induces a group homomorphism $\rho_M : G \to \operatorname{End}(M)$. Prove the reciprocal statement: if V is a vector space and $\rho : G \to \operatorname{End}(V)$ a group homomorphism, prove that we can endow V with a structure of $\mathbb{C}[G]$ -module.

Solution. Easy.

2. (Sorry there were a few typos in this questions) Let M be a finite dimensional $\mathbb{C}[G]$ -module and N a sub-module of M. Let us consider N' a supplement of M as a vector space (in general N' is NOT a $\mathbb{C}[G]$ -module), and denote p the projector from M to N along N'. By using the map

$$\pi := \frac{1}{\#G} \sum_{g \in G} \rho_M(g) \circ p \circ \rho_M(g)^{-1},$$

prove³ that we can find a submodule N'' of M such that $M = N \oplus N''$.

Solution. Let us first prove that π is a projector on N: for all $x \in M$, we have:

$$\begin{aligned} \pi \circ \pi(x) &= \frac{1}{\#G^2} \sum_{g_1,g_2 \in G} \rho_M(g_1) \circ p \circ \rho_M(g_1)^{-1} \circ \rho_M(g_2) \circ p \circ \rho_M(g_2)^{-1}(x) \\ &= \frac{1}{\#G^2} \sum_{g_1,g_2 \in G} \rho_M(g_1) \circ p(\rho_M(g_1)^{-1} \circ \rho_M(g_2) \circ p \circ \rho_M(g_2)^{-1}(x)) \\ &= \frac{1}{\#G^2} \sum_{g_1,g_2 \in G} \rho_M(g_1) \circ (\rho_M(g_1)^{-1} \circ \rho_M(g_2) \circ p \circ \rho_M(g_2)^{-1}(x)) \\ &= \frac{1}{\#G^2} \sum_{g_1,g_2 \in G} \rho_M(g_2) \circ p \circ \rho_M(g_2)^{-1}(x)) \\ &= \frac{1}{\#G} \sum_{g_2 \in G} \rho_M(g_2) \circ p \circ \rho_M(g_2)^{-1}(x)) \\ &= \pi(x). \end{aligned}$$

So that π is a projector. It's image is clearly contained in N and as its trace is equal to the trace of p it's image is exactly N. Let us now show that it is a $\mathbb{C}[G]$ -module map. It is enough to show that π commutes with $\rho_M(h)$ for every h in G. We have indeed:

$$\begin{aligned} \pi \circ \rho_M(h) &= \frac{1}{\#G} \sum_{g \in G} \rho_M(g) \circ p \circ \rho_M(g)^{-1} \circ \rho(h) \\ &= \frac{1}{\#G} \sum_{g \in G} \rho_M(g) \circ p \circ \rho_M(g^{-1}h)^{-1} \\ &= \frac{1}{\#G} \sum_{g \in G} \rho_M(g) \circ p \circ \rho_M(g^{-1}h) \\ &= \frac{1}{\#G} \sum_{g \in G} \rho_M(g) \circ p \circ \rho_M(h^{-1}g)^{-1} \\ &= \frac{1}{\#G} \sum_{g'=h^{-1}g \in G} \rho_M(hg') \circ p \circ \rho_M(g')^{-1} \\ &= \frac{1}{\#G} \sum_{g'=h^{-1}g \in G} \rho_M(h) \circ \rho_M(g') \circ p \circ \rho_M(g')^{-1} \\ &= \rho_M(h) \circ \pi. \end{aligned}$$

The projector π is a $\mathbb{C}[G]$ -module map, hence $N'' := \ker \pi$ is a $\mathbb{C}[G]$ -module (why ?), and we have $M = N \oplus N'$.

 $^{{}^{3}}$ If A is an algebra, we say that a A-module N is *simple* if N does not contain non-trivial sub-modules. And that an object is *indecomposable* if it cannot be expressed as a direct sum of two sub-modules. This question shows that in the case of group algebras for finite groups, these two notions coincide (why?), this is NOT true in general.

3. Let M_1 and M_2 be two simple $\mathbb{C}[G]$ -module and $f : M_1 \to M_2$ a morphism of $\mathbb{C}[G]$ -modules. Suppose that f is different from 0. Prove that M_1 and M_2 are isomorphic.

Solution. The kernel and the image of f are submodules of M_1 and M_2 , but this two modules are simple, hence ker $f = \{0\}$ or ker $f = M_1$ and Im $f = \{0\}$ or Im $f = M_2$. As f is non zero we have: ker $f = \{0\}$ and Im $f = M_2$, so that f is an isomorphism.

4. With the same notations and the same hypothesis as the previous question, and by considering the eigenvalues of f, prove that f is an homothety (that is a multiple of the identity)⁴.

Solution. The question is not completely clear (sorry): since M_1 and M_2 are different (isomorphic bu different!), one cannot speak about the identity morphism. So we have to suppose that f is an endomorphism of M_1 . Let $\lambda \in \mathbb{C}$ be an eigenvalue of f, $f - \lambda \operatorname{id}_{M_1}$ is a $\mathbb{C}[G]$ -module map. Hence its kernel has to be $\{0\}$ or M_1 , since it is not $\{0\}$, it is M_1 and f is an homothety.

Problem 3 (Burau representations of the braid group). We consider B_n the braid group on n strands and with its standard generators $(\sigma_i)_{1 \le i \le n-1}$. Let t be a non-zero complex number.

1. Prove that the following data yields a well-defined complex *n*-dimensional representation of B_n :

$$\sigma_i \mapsto \begin{pmatrix} I_{i-1} & & & \\ & 1-t & t & \\ & 1 & 0 & \\ & & & I_{n-i-1} \end{pmatrix}$$

It is called the $Burau^5$ representation of the braid group.

- 2. Prove that this representation is not irreducible (look for a common eigenvector).
- 3. Let us denote by $b_0, b_2, \ldots b_{n-1}$ the standard basis of \mathbb{C}^n . Prove that the (n-1)-dimensional space spanned by $(t^i b_i t^{i+1} b_{i+1})_{0 \le i \le n-2})$ is invariant by the action of B_n . This is a new representation of the braid group called *reduced Burau representation* of the braid group.
- 4. Compute the matrix associated to σ_i by the reduced Burau representation in the given base.

⁴This is Schur's lemma. Schur (1875 – 1945) was a German mathematician.

 $^{^{5}}$ Werner Burau (1906 – 1994) was a german mathematician and was professor in Hamburg.