U

iti
Universität Hamburg
der forschung I der lehre I der bildung
Algebra and Number Theory
Mathematics department

Sheet 3

Problem 1. Let $\mathfrak{g}, \mathfrak{h}$ be Lie algebras over a field \mathbb{K}. Recall that the enveloping algebra $U(\mathfrak{g})$ of \mathfrak{g} was constructed in the lecture as the quotient of the tensor algebra $T(\mathfrak{g})$ by the two-sided ideal $I \subset T(\mathfrak{g})$ generated by the vectors $x \otimes y-y \otimes x-[x, y]$ with $x, y \in \mathfrak{g}$. The canonical embedding $\iota_{\mathfrak{g}}: \mathfrak{g} \rightarrow U(\mathfrak{g})$ was given by the map $x \mapsto x+I$.

1. Show that for every Lie algebra homomorphism $\varphi: \mathfrak{g} \rightarrow \mathfrak{h}$ there is a unique morphism $U(\varphi)$: $U(\mathfrak{g}) \rightarrow U(\mathfrak{h})$ of associative algebras, such that $\iota_{\mathfrak{h}} \circ \varphi=U(\varphi) \circ \iota_{\mathfrak{g}}$.

Solution. Let us recall that the universal property of the universal enveloping algebra $\left(U(\mathfrak{g}), \iota_{\mathfrak{g}}\right)$ of the Lie algebra \mathfrak{g} reads like as follows. For every (unital associative) ${ }^{1} \mathbb{K}$-algebra, and every morphism (of Lie algebras) $f: \mathfrak{g} \rightarrow$, there exists a unique unital ${ }^{2}$ morphism (of algebras) $\tilde{f}: U(\mathfrak{g}) \rightarrow A$. This can be summarized by the following diagram:

The algebra $U(\mathfrak{h})$ is unital and associative. The map $\iota_{\mathfrak{h}} \circ \phi: \mathfrak{g} \rightarrow U(\mathfrak{h})$ is a Lie algebra map, hence, thanks to the universal property we know that there exist a unital map $U(\phi):=\overline{\iota_{\mathfrak{h}} \circ \phi \text { such that the }}$ following diagram commutes:

This is what we wanted. The uniqueness follows from the fact that, as an algebra, $U(h)$ is generated by $\iota_{\mathfrak{g}}(\mathfrak{g})$ and by 1 and the image hence the images of these element by $U(\phi)$ are determined by the required equality.
2. Let $\varphi: \mathfrak{g} \rightarrow \mathfrak{g}^{\prime}$ and $\psi: \mathfrak{g}^{\prime} \rightarrow \mathfrak{g}^{\prime \prime}$ be Lie algebra homomorphisms. Show that the equalities $U\left(\mathrm{id}_{\mathfrak{g}}\right)=$ $\operatorname{id}_{U(\mathfrak{g})}$ and $U(\psi \circ \varphi)=U(\psi) \circ U(\varphi)$ hold. (Hint: Use the universal property of the enveloping algebra)

Solution. This says that U is a functor from the category of Lie \mathbb{K}-algebra to the category of \mathbb{K} algebra. The diagram

[^0]commutes and the uniqueness of the previous question implies that $\operatorname{id}_{U(\mathfrak{g})}=U\left(\mathrm{id}_{\mathfrak{g}}\right)$. In the following diagram the two squares commutes:

This implies that the following diagram commutes:

And this gives $U(\psi) \circ U(\varphi)=U(\psi \circ \varphi)$, once more by the uniqueness of the first question.
3. Show the existence of an isomorphism $U\left(\mathfrak{g}^{\text {opp }}\right) \rightarrow U(\mathfrak{g})^{\text {opp }}$ of associative algebras. (Hint: Show that $U(\mathfrak{g})^{\text {opp }}$ together with the linear map $\iota: \mathfrak{g}^{\text {opp }} \rightarrow U(\mathfrak{g})^{\text {opp }}, x \mapsto x+I$ fulfills the universal property of the enveloping algebra of $\mathfrak{g}^{\text {opp }}$.)

Solution. As vector spaces $U(\mathfrak{g})^{\text {opp }}$ and $\mathfrak{g}^{\text {opp }}$ are nothing but identical (I really mean identical, not isomorphic) to $U(\mathfrak{g})$ and \mathfrak{g}. Hence the map $\iota_{\mathfrak{g}}: \mathfrak{g} \rightarrow U(\mathfrak{g})$ can be regarded as a map from $\mathfrak{g}^{\text {opp }}$ to $U\left(\mathfrak{g}^{\text {opp }}\right)$. We will show that the pair $\left(U(\mathfrak{g})^{\text {opp }}, \iota_{\mathfrak{g}}\right)$ satisfies the universal property of the universal enveloping algebra for $\mathfrak{g}^{\text {opp }}$. This will implies that there exists a unique isomorphism $\lambda: U\left(\mathfrak{g}^{\text {opp }}\right) \rightarrow U(\mathfrak{g})^{\text {opp }}$ such that $\lambda \circ \iota_{\mathfrak{g}}{ }^{\text {opp }}=\iota_{\mathfrak{g}}$. Let A be a \mathbb{K}-algebra and $f: \mathfrak{g}^{\text {opp }} \rightarrow A$ a (Lie algebra) map. This is as well a map of Lie algebra from \mathfrak{g} to $A_{\tilde{f}}{ }^{\text {opp }}$, hence there exists a unital map of algebra $\tilde{f}: U(\mathfrak{g}) \rightarrow A^{\text {opp }}$ such that $\tilde{f} \circ \iota_{g}=f$. The map \tilde{f} can be regarded as a map from $U(\mathfrak{g})^{\mathrm{opp}} \rightarrow A$. Hence we have the following commutative diagram:

This proves that $U(\mathfrak{g})^{\text {opp }}$ fulfills the universal property of the universal enveloping algebra $\mathfrak{g}^{\text {opp }}$.

Problem 2. Let G be a finite group, $\mathbb{C}[G]$ its associated \mathbb{C}-algebra. A $\mathbb{C}[G]$-module is also called a representation of $G(:=$ Darstellung von $G)$.

1. Let M be a finite dimensional $\mathbb{C}[G]$-module. Prove that the $\mathbb{C}[G]$-module structure of M induces a group homomorphism $\rho_{M}: G \rightarrow \operatorname{End}(M)$. Prove the reciprocal statement: if V is a vector space and $\rho: G \rightarrow \operatorname{End}(V)$ a group homomorphism, prove that we can endow V with a structure of $\mathbb{C}[G]$-module.

Solution. Easy.
2. (Sorry there were a few typos in this questions) Let M be a finite dimensional $\mathbb{C}[G]$-module and N a sub-module of M. Let us consider N^{\prime} a supplement of M as a vector space (in general N^{\prime} is NOT a $\mathbb{C}[G]$-module), and denote p the projector from M to N along N^{\prime}. By using the map

$$
\pi:=\frac{1}{\# G} \sum_{g \in G} \rho_{M}(g) \circ p \circ \rho_{M}(g)^{-1},
$$

prove ${ }^{3}$ that we can find a submodule $N^{\prime \prime}$ of M such that $M=N \oplus N^{\prime \prime}$.

Solution. Let us first prove that π is a projector on N : for all $x \in M$, we have:

$$
\begin{aligned}
\pi \circ \pi(x) & =\frac{1}{\# G^{2}} \sum_{g_{1}, g_{2} \in G} \rho_{M}\left(g_{1}\right) \circ p \circ \rho_{M}\left(g_{1}\right)^{-1} \circ \rho_{M}\left(g_{2}\right) \circ p \circ \rho_{M}\left(g_{2}\right)^{-1}(x) \\
& =\frac{1}{\# G^{2}} \sum_{g_{1}, g_{2} \in G} \rho_{M}\left(g_{1}\right) \circ p\left(\rho_{M}\left(g_{1}\right)^{-1} \circ \rho_{M}\left(g_{2}\right) \circ p \circ \rho_{M}\left(g_{2}\right)^{-1}(x)\right) \\
& =\frac{1}{\# G^{2}} \sum_{g_{1}, g_{2} \in G} \rho_{M}\left(g_{1}\right) \circ\left(\rho_{M}\left(g_{1}\right)^{-1} \circ \rho_{M}\left(g_{2}\right) \circ p \circ \rho_{M}\left(g_{2}\right)^{-1}(x)\right) \\
& \left.=\frac{1}{\# G^{2}} \sum_{g_{1}, g_{2} \in G} \rho_{M}\left(g_{2}\right) \circ p \circ \rho_{M}\left(g_{2}\right)^{-1}(x)\right) \\
& \left.=\frac{1}{\# G} \sum_{g_{2} \in G} \rho_{M}\left(g_{2}\right) \circ p \circ \rho_{M}\left(g_{2}\right)^{-1}(x)\right) \\
& =\pi(x) .
\end{aligned}
$$

So that π is a projector. It's image is clearly contained in N and as its trace is equal to the trace of p it's image is exactly N. Let us now show that it is a $\mathbb{C}[G]$-module map. It is enough to show that π commutes with $\rho_{M}(h)$ for every h in G. We have indeed:

$$
\begin{aligned}
\pi \circ \rho_{M}(h) & =\frac{1}{\# G} \sum_{g \in G} \rho_{M}(g) \circ p \circ \rho_{M}(g)^{-1} \circ \rho(h) \\
& =\frac{1}{\# G} \sum_{g \in G} \rho_{M}(g) \circ p \circ \rho_{M}\left(g^{-1} h\right)^{-1} \\
& =\frac{1}{\# G} \sum_{g \in G} \rho_{M}(g) \circ p \circ \rho_{M}\left(g^{-1} h\right) \\
& =\frac{1}{\# G} \sum_{g \in G} \rho_{M}(g) \circ p \circ \rho_{M}\left(h^{-1} g\right)^{-1} \\
& =\frac{1}{\# G} \sum_{g^{\prime}=h^{-1} g \in G} \rho_{M}\left(h g^{\prime}\right) \circ p \circ \rho_{M}\left(g^{\prime}\right)^{-1} \\
& =\frac{1}{\# G} \sum_{g^{\prime}=h^{-1} g \in G} \rho_{M}(h) \circ \rho_{M}\left(g^{\prime}\right) \circ p \circ \rho_{M}\left(g^{\prime}\right)^{-1} \\
& =\rho_{M}(h) \circ \pi .
\end{aligned}
$$

The projector π is a $\mathbb{C}[G]$-module map, hence $N^{\prime \prime}:=\operatorname{ker} \pi$ is a $\mathbb{C}[G]$-module (why ?), and we have $M=N \oplus N^{\prime}$.

[^1]3. Let M_{1} and M_{2} be two simple $\mathbb{C}[G]$-module and $f: M_{1} \rightarrow M_{2}$ a morphism of $\mathbb{C}[G]$-modules. Suppose that f is different from 0 . Prove that M_{1} and M_{2} are isomorphic.

Solution. The kernel and the image of f are submodules of M_{1} and M_{2}, but this two modules are simple, hence $\operatorname{ker} f=\{0\}$ or $\operatorname{ker} f=M_{1}$ and $\operatorname{Im} f=\{0\}$ or $\operatorname{Im} f=M_{2}$. As f is non zero we have: $\operatorname{ker} f=\{0\}$ and $\operatorname{Im} f=M_{2}$, so that f is an isomorphism.
4. With the same notations and the same hypothesis as the previous question, and by considering the eigenvalues of f, prove that f is an homothety (that is a multiple of the identity) ${ }^{4}$.

Solution. The question is not completely clear (sorry): since M_{1} and M_{2} are different (isomorphic bu different!), one cannot speak about the identity morphism. So we have to suppose that f is an endomorphism of M_{1}. Let $\lambda \in \mathbb{C}$ be an eigenvalue of $f, f-\lambda_{M_{1}}$ is a $\mathbb{C}[G]$-module map. Hence its kernel has to be $\{0\}$ or M_{1}, since it is not $\{0\}$, it is M_{1} and f is an homothety.

Problem 3 (Burau representations of the braid group). We consider B_{n} the braid group on n strands and with its standard generators $\left(\sigma_{i}\right)_{1 \leq i \leq n-1}$. Let t be a non-zero complex number.

1. Prove that the following data yields a well-defined complex n-dimensional representation of B_{n} :

$$
\sigma_{i} \mapsto\left(\begin{array}{cccc}
I_{i-1} & & & \\
& 1-t & t & \\
& 1 & 0 & \\
& & & I_{n-i-1}
\end{array}\right)
$$

It is called the Burau ${ }^{5}$ representation of the braid group.
2. Prove that this representation is not irreducible (look for a common eigenvector).
3. Let us denote by $b_{0}, b_{2}, \ldots b_{n-1}$ the standard basis of \mathbb{C}^{n}. Prove that the $(n-1)$-dimensional space spanned by $\left.\left(t^{i} b_{i}-t^{i+1} b_{i+1}\right)_{0 \leq i \leq n-2}\right)$ is invariant by the action of B_{n}. This is a new representation of the braid group called reduced Burau representation of the braid group.
4. Compute the matrix associated to σ_{i} by the reduced Burau representation in the given base.

[^2]
[^0]: ${ }^{1}$ When not mentioned this hypotheses are implicit.
 ${ }^{2}$ This means 1 is mapped to 1 , and this is NOT an implicit hypothesis!

[^1]: ${ }^{3}$ If A is an algebra, we say that a A-module N is simple if N does not contain non-trivial sub-modules. And that an object is indecomposable if it cannot be expressed as a direct sum of two sub-modules. This question shows that in the case of group algebras for finite groups, these two notions coincide (why?), this is NOT true in general.

[^2]: ${ }^{4}$ This is Schur's lemma. Schur ($1875-1945$) was a German mathematician.
 ${ }^{5}$ Werner Burau (1906-1994) was a german mathematician and was professor in Hamburg.

