

PD Dr. Ralf Holtkamp Prof. Dr. C. Schweigert Hopf algebras Winter term 2014/2015

Sheet 4

In this sheet \mathbb{K} is a field.

Problem 1. Let C a coalgebra and $I \subset C$ a vector subspace.

1. Show that the map

$$\overline{\Delta} : C/I \to C/I \otimes C,$$

 $x + I \mapsto \sum_{(x)} (x_{(1)} + I) \otimes x_{(2)}$

is a well-defined counital coaction of the coalgebra C on the quotient vector space C/I, iff I is a right coideal.

- 2. Show that the comultiplication and counit of C define a coalgebra structure on the quotient vector space C/I by the induced maps, iff I is a two-sided coideal.
- 3. Deduce from the previous question that C is a sum of finite dimensional co-algebra.

Problem 2. Let (C, Δ, ϵ) be a coalgebra and x be an element of C.

1. Prove that for all $n \in \mathbb{N}$ and all i in [1, n+1], we have:

$$\sum_{(x)} x_{(1)} \otimes x_{(2)} \otimes \cdots \otimes x_{(n)} = \sum_{(x)} x_{(1)} \otimes \cdots \otimes x_{(i-1)} \otimes \epsilon(x_{(i)}) \otimes x_{(i+1)} \otimes \cdots \otimes x_{(n+1)}$$

Problem 3 (Frobenius¹ algebra). Let A be a finite dimensional K-algebra. Let $\eta : A \to K$ be a K-linear map, we suppose that the composition $\eta \circ \mu =: \langle \cdot, \cdot \rangle$ is a non-degenerate² bilinear form (A is then called a *Frobenius algebra*).

- 1. Prove that A is then naturally endowed with a co-algebra structure.
- 2. Prove $\operatorname{Mat}_{n \times n}(\mathbb{K})$ is a Frobenius algebra.
- 3. If G is a finite group, prove that $\mathbb{K}G$ is a Frobenius algebra.
- 4. (A little more difficult) Prove that $\mathbb{K}[X,Y]/(X^2,Y^2,XY)$ is not a Frobenius algebra.

Problem 4. Let $C := \mathbb{K}[X]$ be the vector space of polynomials in one variable and let us consider the following linear maps $\Delta(X^n) = \sum_{p+q=n} X^p \otimes X^q$ and $\epsilon(X^n) = \delta_{n,0}$.

- 1. Show that (C, Δ, ϵ) is a counital coalgebra.
- 2. We know that C, with the usual multiplication of polynomials, is an associative algebra. Is C with the comultiplication Δ a bialgebra?
- 3. Define $\mu(X^p \otimes X^q) := \binom{p+q}{p} X^{p+q}$. Show that this defines an associative multiplication on C. What is the unit?

Georg Frobenius (1849 – 1917), was a german Mathematician

²I mean here that for every x, there exists y such that $\langle x, y \rangle \neq 0_{\mathbb{K}}$

4. Show that C is a bialgebra with the product μ and coproduct Δ .

Problem 5. Let C be a \mathbb{K} -coalgebra. And let us denote by C^* the dual of C.

- 1. (Re)-prove that C^{\star} is naturally endowed with a structure of algebra.
- 2. Let M be a comodule-C (I mean here a right C-comodule), (re)-prove that M is naturally endowed with a structure of C^* -module.
- 3. From now on M will be a C^* -module. Prove that there exists a natural embedding ι of $M \otimes C$ in $\operatorname{Hom}(C^*, M)$.
- 4. Prove that from C^* -module structure of M, one can naturally define a map $\rho : M \to \text{Hom}(C^*, M)$. A module such that $\rho(M) \subseteq \iota M \otimes C$ is called a *rational* module.
- 5. Prove that if the C^* -module structure of M is obtained by the construction of question 2, then M is rational.
- 6. Prove that if a C^* -module M is rational, it can be naturally endowed with a comodule- C^* structure.
- 7. If M is a rational module, prove that $N \subset M$ is a submodule if and only if $\rho(N) \subseteq N \otimes C$.