iti
Universität Hamburg
der forschung । der lehre I der bildung
Algebra and Number Theory
Mathematics department

PD Dr. Ralf Holtkamp
Prof. Dr. C. Schweigert
Hopf algebras
Winter term 2014/2015

Sheet 4

In this sheet \mathbb{K} is a field.
Problem 1. Let C a coalgebra and $I \subset C$ a vector subspace.

1. Show that the map

$$
\begin{aligned}
\bar{\Delta}: C / I & \rightarrow C / I \otimes C, \\
x+I & \mapsto \sum_{(x)}\left(x_{(1)}+I\right) \otimes x_{(2)}
\end{aligned}
$$

is a well-defined counital coaction of the coalgebra C on the quotient vector space C / I, iff I is a right coideal.
2. Show that the comultiplication and counit of C define a coalgebra structure on the quotient vector space C / I by the induced maps, iff I is a two-sided coideal.
3. Deduce from the previous question that C is a sum of finite dimensional co-algebra.

Problem 2. Let (C, Δ, ϵ) be a coalgebra and x be an element of C.

1. Prove that for all $n \in \mathbb{N}$ and all i in $[1, n+1]$, we have:

$$
\sum_{(x)} x_{(1)} \otimes x_{(2)} \otimes \cdots \otimes x_{(n)}=\sum_{(x)} x_{(1)} \otimes \cdots \otimes x_{(i-1)} \otimes \epsilon\left(x_{(i)}\right) \otimes x_{(i+1)} \otimes \cdots \otimes x_{(n+1)}
$$

Problem 3 (Frobenius ${ }^{1}$ algebra). Let A be a finite dimensional \mathbb{K}-algebra. Let $\eta: A \rightarrow \mathbb{K}$ be a \mathbb{K}-linear map, we suppose that the composition $\eta \circ \mu=:\langle\cdot, \cdot\rangle$ is a non-degenerate ${ }^{2}$ bilinear form (A is then called a Frobenius algebra).

1. Prove that A is then naturally endowed with a co-algebra structure.
2. Prove $\operatorname{Mat}_{n \times n}(\mathbb{K})$ is a Frobenius algebra.
3. If G is a finite group, prove that $\mathbb{K} G$ is a Frobenius algebra.
4. (A little more difficult) Prove that $\mathbb{K}[X, Y] /\left(X^{2}, Y^{2}, X Y\right)$ is not a Frobenius algebra.

Problem 4. Let $C:=\mathbb{K}[X]$ be the vector space of polynomials in one variable and let us consider the following linear maps $\Delta\left(X^{n}\right)=\sum_{p+q=n} X^{p} \otimes X^{q}$ and $\epsilon\left(X^{n}\right)=\delta_{n, 0}$.

1. Show that (C, Δ, ϵ) is a counital coalgebra.
2. We know that C, with the usual multiplication of polynomials, is an associative algebra. Is C with the comultiplication Δ a bialgebra?
3. Define $\mu\left(X^{p} \otimes X^{q}\right):=\binom{p+q}{p} X^{p+q}$. Show that this defines an associative multiplication on C. What is the unit?

[^0]4. Show that C is a bialgebra with the product μ and coproduct Δ.

Problem 5. Let C be a \mathbb{K}-coalgebra. And let us denote by C^{\star} the dual of C.

1. (Re)-prove that C^{\star} is naturally endowed with a structure of algebra.
2. Let M be a comodule- C (I mean here a right C-comodule), (re)-prove that M is naturally endowed with a structure of C^{\star}-module.
3. From now on M will be a C^{\star}-module. Prove that there exists a natural embedding ι of $M \otimes C$ in $\operatorname{Hom}\left(C^{\star}, M\right)$.
4. Prove that from C^{\star}-module structure of M, one can naturally define a map $\rho: M \rightarrow \operatorname{Hom}\left(C^{\star}, M\right)$. A module such that $\rho(M) \subseteq \iota M \otimes C$ is called a rational module.
5. Prove that if the C^{\star}-module structure of M is obtained by the construction of question 2 , then M is rational.
6. Prove that if a C^{\star}-module M is rational, it can be naturally endowed with a comodule- C^{\star} structure.
7. If M is a rational module, prove that $N \subset M$ is a submodule if and only if $\rho(N) \subseteq N \otimes C$.

[^0]: ${ }^{1}$ Georg Frobenius (1849-1917), was a german Mathematician
 ${ }^{2}$ I mean here that for every x, there exists y such that $\langle x, y\rangle \neq 0_{\mathbb{K}}$

