Algebra and Number Theory
Mathematics department

## Sheet 4

In this sheet $\mathbb{K}$ is a field.
Problem 1. Let $C$ a coalgebra and $I \subset C$ a vector subspace.

1. Show that the map

$$
\begin{aligned}
\bar{\Delta}: C / I & \rightarrow C / I \otimes C, \\
x+I & \mapsto \sum_{(x)}\left(x_{(1)}+I\right) \otimes x_{(2)}
\end{aligned}
$$

is a well-defined counital coaction of the coalgebra $C$ on the quotient vector space $C / I$, iff $I$ is a right coideal.

Solution. Let $\pi: C \rightarrow C / I$ be the canonical projection. Consider the linear map $f:=\left(\pi \otimes \mathrm{id}_{C}\right) \circ \Delta: C \rightarrow$ $C / I \otimes C$. There is a unique map $F: C / I \rightarrow C / I \otimes C$ with $F \circ \pi=f$, iff $I \subset \operatorname{ker} f$. Now $I \subset \operatorname{ker} f$ is equivalent to $\Delta(I) \subset \operatorname{ker}\left(\pi \otimes \operatorname{id}_{C}\right)=I \otimes C$, i.e. $I$ is a right coideal. Since $\bar{\Delta} \circ \pi=(\pi \otimes \mathrm{id}) \circ \Delta$ we have $F=\bar{\Delta}$.
Now we have

$$
\begin{aligned}
\left(\bar{\Delta} \otimes \operatorname{id}_{C}\right) \bar{\Delta}(x+I) & =\sum_{(x)} \bar{\Delta}\left(x_{(1)}+I\right) \otimes x_{(2)} \\
& =\sum_{(x)} \sum_{\left(x_{(1)}\right)}\left(\left(x_{(1)}\right)_{(1)}+I\right) \otimes\left(x_{(1)}\right)_{(2)} \otimes x_{(2)} \\
& \stackrel{\text { coass. }}{=} \sum_{(x)} \sum_{\left(x_{(2)}\right)}\left(x_{(1)}+I\right) \otimes\left(x_{(2)}\right)_{(1)} \otimes\left(x_{(2)}\right)_{(2)} \\
& =\sum_{(x)}\left(x_{(1)}+I\right) \otimes \Delta\left(x_{(2)}\right)=\left(\operatorname{id}_{C / I} \otimes \Delta\right) \bar{\Delta}(x+I)
\end{aligned}
$$

hence $\bar{\Delta}$ is coassociative. Furthermore by

$$
\left(\operatorname{id}_{C / I} \otimes \epsilon\right) \bar{\Delta}(x+I)=\sum_{(x)}\left(x_{(1)}+I\right) \otimes \epsilon\left(x_{(2)}\right)=x+I
$$

we see that $\bar{\Delta}$ is counital.
2. Show that the comultiplication and counit of $C$ define a coalgebra structure on the quotient vector space $C / I$ by the induced maps, iff $I$ is a two-sided coideal.

Solution. Consider the linear map $(\pi \otimes \pi) \circ \Delta: C \rightarrow C / I \otimes C / I$. There exists a linear map

$$
\Delta_{C / I}: C / I \rightarrow C / I \otimes C / I
$$

with $\Delta_{C / I} \circ \pi=(\pi \otimes \pi) \circ \Delta$, iff

$$
I \subset \operatorname{ker}((\pi \otimes \pi) \Delta) \Longleftrightarrow \Delta(I) \subset \operatorname{ker}(\pi \otimes \pi)=I \otimes C+C \otimes I
$$

Now consider the linear map $\epsilon: C \rightarrow \mathbb{K}$. There exists a linear map $\epsilon_{C / I}: C / I \rightarrow \mathbb{K}$ with $\epsilon_{C / I} \circ \pi=\epsilon$, iff

$$
I \subset \operatorname{ker}(\epsilon) \quad \Longleftrightarrow \quad \epsilon(I)=0
$$

If the induced maps $\Delta_{C / I}: C / I \rightarrow C / I \otimes C / I$ and $\epsilon_{C / I}: C / I \rightarrow \mathbb{K}$ exist, we see by similar calculations as in the first question that they give the structure of a coalgebra on the quotient vector space $C / I$.

Problem 2. Let $(C, \Delta, \epsilon)$ be a coalgebra and $x$ be an element of $C$.

1. Prove that for all $n \in \mathbb{N}$ and all $i$ in $[1, n+1]$, we have:

$$
\sum_{(x)} x_{(1)} \otimes x_{(2)} \otimes \cdots \otimes x_{(n)}=\sum_{(x)} x_{(1)} \otimes \cdots \otimes x_{(i-1)} \otimes \epsilon\left(x_{(i)}\right) \otimes x_{(i+1)} \otimes \cdots \otimes x_{(n+1)}
$$

Problem 3 (Frobenius ${ }^{1}$ algebra). Let $A$ be a finite dimensional $\mathbb{K}$-algebra. Let $\eta: A \rightarrow \mathbb{K}$ be a $\mathbb{K}$-linear map, we suppose that the composition $\eta \circ \mu=:\langle\cdot, \cdot\rangle$ is a non-degenerate ${ }^{2}$ bilinear form ( $A$ is then called a Frobenius algebra).

1. Prove that $A$ is then naturally endowed with a co-algebra structure.
2. Prove $\operatorname{Mat}_{n \times n}(\mathbb{K})$ is a Frobenius algebra.
3. If $G$ is a finite group, prove that $\mathbb{K} G$ is a Frobenius algebra.
4. (A little more difficult) Prove that $\mathbb{K}[X, Y] /\left(X^{2}, Y^{2}, X Y\right)$ is not a Frobenius algebra.

Problem 4. Let $C:=\mathbb{K}[X]$ be the vector space of polynomials in one variable and let us consider the following linear maps $\Delta\left(X^{n}\right)=\sum_{p+q=n} X^{p} \otimes X^{q}$ and $\epsilon\left(X^{n}\right)=\delta_{n, 0}$.

1. Show that $(C, \Delta, \epsilon)$ is a counital coalgebra.

Solution. We only have to check equalities on the basis $\left\{X^{n}\right\}_{n \in \mathbb{N}}$. Both $(\Delta \otimes \mathrm{id}) \Delta\left(X^{n}\right)$ and $(\mathrm{id} \otimes \Delta) \Delta\left(X^{n}\right)$ are equal to

$$
\sum_{\substack{p, q, r \in \mathbb{N} \\ p+q+r=n}} X^{p} \otimes X^{q} \otimes X^{r}
$$

For the counitality $(\epsilon \otimes \mathrm{id}) \Delta\left(X^{n}\right)=\sum_{k=0}^{n} \epsilon\left(X^{k}\right) \otimes X^{n-k}=1 \otimes X^{n}=X^{n}$. In the same way we see $(\mathrm{id} \otimes \epsilon) \Delta\left(X^{n}\right)=X^{n}$.
2. We know that $C$, with the usual multiplication of polynomials, is an associative algebra. Is $C$ with the comultiplication $\Delta$ a bialgebra?

Solution. We have $\epsilon(1)=1$ and for $n+m>0: \epsilon\left(X^{n} \cdot X^{m}\right)=0=\epsilon\left(X^{n}\right) \cdot \epsilon\left(X^{m}\right)$, so $\epsilon$ is a unital algebra homomorphism. Since $\Delta(1)=1 \otimes 1, \Delta$ is unital, but since

$$
\begin{gathered}
\Delta\left(X^{2}\right)=X^{2} \otimes 1+X \otimes X+1 \otimes X^{2} \quad \text { and } \\
\Delta(X) \Delta(X)=(X \otimes 1+1 \otimes X)(X \otimes 1+1 \otimes X)=X^{2} \otimes 1+2(X \otimes X)+1 \otimes X^{2}
\end{gathered}
$$

the comultiplication is not a map of algebras, thus we do not have a bialgebra.

[^0]3. Define $\mu\left(X^{p} \otimes X^{q}\right):=\binom{p+q}{p} X^{p+q}$. Show that this defines an associative multiplication on $C$. What is the unit?
4. Show that $C$ is a bialgebra with the product $\mu$ and coproduct $\Delta$.

Problem 5. Let $C$ be a $\mathbb{K}$-coalgebra. And let us denote by $C^{\star}$ the dual of $C$.

1. ( Re )-prove that $C^{\star}$ is naturally endowed with a structure of algebra.

Solution. In this direction there is no problem even if $C$ is not finite dimensional: If $\Delta$ and $\epsilon$ where the coproduct and the co-unity, we define $\mu_{C \star}$ and $\eta_{C^{\star}}$ via:

$$
\begin{array}{rlrlll}
\mu_{C^{\star}}: C^{\star} \otimes C^{\star} & \rightarrow C^{\star} & & & \\
f \otimes g & \rightarrow\left\{\begin{array}{rlll}
f g: & C & \rightarrow & \mathbb{K} \\
& x & \mapsto & \sum_{(x)} f\left(x_{(1)}\right) g\left(x_{(2)}\right)
\end{array}\right. & \mathbb{K} & \rightarrow C^{\star} \\
& & \mapsto & & & \\
& & &
\end{array}
$$

One easily checks that $\left(C^{\star}, \mu_{C^{\star}}, \eta_{C^{\star}}\right)$ is indeed an associative unital algebra.
2. Let $M$ be a comodule- $C$ (I mean here a right $C$-comodule), (re)-prove that $M$ is naturally endowed with a structure of $C^{\star}$-module.

Solution. By naturally, I meant here that there is a formula. Let $m$ be an element of $M$ and $f$ an element of $C^{\star}$, we define:

$$
f \rightharpoonup m=\sum_{(m)} m_{(0)} \cdot f\left(m_{(1)}\right)=\sum_{(m)} f\left(m_{(1)}\right) \cdot m_{(0)}
$$

where • denote the product of $m$ by element of the ground field. Let us show that $f \rightharpoonup(g \rightharpoonup m)$ is equal to $(f g) \rightharpoonup m$ :

$$
\begin{aligned}
f \rightharpoonup(g \rightharpoonup m) & =f \rightharpoonup\left(\sum_{(m)} g\left(m_{(1)}\right) \cdot m_{(0)}\right) \\
& =\sum_{(m)} f \rightharpoonup\left(g\left(m_{(1)}\right) \cdot m_{(0)}\right) \\
& =\sum_{(m)} g\left(m_{(1)}\right) \cdot\left(f \rightharpoonup m_{(0)}\right) \\
& =\sum_{(m)} g\left(m_{(2)}\right) f\left(m_{(1)}\right) m_{(0)} \\
& =\sum_{(m)} m_{(0)} f\left(m_{(1)}\right) g\left(m_{(2)}\right) \\
\text { and } & \\
(f g) \rightharpoonup m & =\sum_{(m)} f g\left(m_{(1)}\right) \cdot m_{(0)} \\
& =\sum_{(m)} f\left(m_{(1)}\right) g\left(m_{(2)}\right) \cdot m_{(0)} \\
& =\sum_{(m)} m_{(0)} f\left(m_{(1)}\right) g\left(m_{(2)}\right)
\end{aligned}
$$

One easily checks that $1_{C^{*}}$ acts trivially on the $M$ :

$$
\begin{aligned}
1 \rightharpoonup m & =\sum_{(m)} \epsilon\left(m_{(1)}\right) m_{(0)} \\
& =m
\end{aligned}
$$

3. From now on $M$ will be a $C^{\star}$-module. Prove that there exists a natural embedding $\iota$ of $M \otimes C$ in $\operatorname{Hom}\left(C^{\star}, M\right)$.

Solution. We define ८ by the following formula:

$$
\begin{aligned}
\iota: M \otimes C & \rightarrow \operatorname{Hom}\left(C^{\star}, M\right) \\
m \otimes c & \mapsto\left\{\begin{array}{rlll}
\iota(m \otimes c): & C^{\star} & \rightarrow & M \\
& f & \mapsto & f(c) \cdot m
\end{array}\right.
\end{aligned}
$$

This is clearly an embedding.
4. Prove that from $C^{\star}$-module structure of $M$, one can naturally define a map $\rho:$. A module such that $\rho(M) \subseteq \iota M \otimes C$ is called a rational module.

Solution. The map $\rho$ is defined by:

$$
\begin{aligned}
\rho: M & \rightarrow \operatorname{Hom}\left(C^{\star}, M\right) \\
m & \mapsto\left\{\begin{array}{rll}
\rho(m): C^{\star} & \rightarrow & M \\
f & \mapsto & f \cdot m
\end{array}\right.
\end{aligned}
$$

5. Prove that if the $C^{\star}$-module structure of $M$ is obtained by the construction of question 2 , then $M$ is rational.

Solution. Let $M$ be a comodule-C. It is endowed via $\rightharpoonup$ with a structure of $C^{\star}$-module. Let $m$ be an element of $m$. Let us compute $\rho(m)$ :

$$
\rho(m)(f)=f \rightharpoonup m=\sum_{(m)} f\left(m_{(1)}\right) \cdot m_{(0)}=\iota\left(\sum_{(m)} m_{(0)} \otimes m_{(1)}\right)(f) .
$$

This shows that $\rho(m)$ is in the image of $\iota$. Since this is valid for all $m$, this shows that $M$ is rational.
6. Prove that if a $C^{\star}$-module $M$ is rational, it can be naturally endowed with a comodule- $C$ structure.

Solution. [This was not so easy.] Of course $\rho$ (almost) provides the structure of comodule- $C$ : let $\pi \operatorname{Hom}\left(C^{\star}, M\right) \rightarrow$ $M \otimes C$ be a linear left inverse to $\iota$, then we define $\Delta_{M}: M \rightarrow M \otimes C$ by $\Delta=\pi \circ \rho$. The definition of $\Delta_{M}$ can be sum up by the following formula:

$$
\begin{equation*}
\iota\left(\Delta_{M}(m)\right)(f)=f \cdot m=\sum_{(m)} m_{(0)} f\left(m_{(1)}\right) \tag{1}
\end{equation*}
$$

Let us first prove that defines a coaction on $M$. First the counity, we have to show that $\left(\mathrm{id}_{M} \otimes \epsilon\right) \circ \Delta_{M}=I d_{M}$. the counity $\epsilon$ is the 1 of the algebra $C^{\star}$, so that we have: $\epsilon \cdot m=m$ for all $m$ in $M$. On the other hand, by (1), we have: $\epsilon \cdot m=\sum_{(m)} m_{(0)} \epsilon\left(m_{(1)}\right)$ so that:

$$
\sum_{(m)} m_{(0)} \epsilon\left(m_{(1)}\right)=m
$$

Let us now prove that $\left(\Delta_{M} \otimes \operatorname{id}_{C}\right) \circ \Delta_{M}=\left(\operatorname{id}_{M} \otimes \Delta_{C}\right) \circ \Delta_{M}$. Let $m$ be an element of $m$ and $f$ and $g$ be two elements of $C^{\star}$.

$$
\begin{aligned}
&\left(\operatorname{id}_{M} \otimes f \otimes g\right) \circ\left(\left(\Delta_{M} \otimes \operatorname{id}_{C}\right) \circ \Delta_{M}\right)(m)=\left(\operatorname{id}_{M} \otimes f\right) \circ\left(\left(\Delta_{M} \otimes g\right) \circ \Delta_{M}\right)(m) \\
&=\left(\operatorname{id}_{M} \otimes f\right)\left(\sum_{(m)}\left(\Delta_{M}\left(m_{(0)}\right) g\left(m_{(1)}\right)\right)\right) \\
&=\left(\operatorname{id}_{M} \otimes f\right)\left(\Delta_{M}\left(\sum_{(m)}\left(m_{(0)}\right) g\left(m_{(1)}\right)\right)\right) \\
&=\left(\operatorname{id}_{M} \otimes f\right)\left(\left(\sum_{(m)}\left(m_{(0)}\right) \otimes m_{(1)} g\left(m_{(2)}\right)\right)\right) \\
&=\left(\left(\sum_{(m)}\left(m_{(0)}\right) \otimes f\left(m_{(1)}\right) g\left(m_{(2)}\right)\right)\right) \\
&=(f g) \cdot m \\
& \text { and }
\end{aligned}
$$

I claim that ifx $=\left(\Delta_{M} \otimes \mathrm{id}_{C}\right) \circ \Delta_{M}(m)-\left(\left(\mathrm{id}_{M} \otimes \Delta_{C}\right) \circ \Delta_{M}\right)(m) \neq 0$, then it would exist $f$ and $g$ such that $\left(\operatorname{id}_{M} \otimes f \otimes g\right)(x)$ would be non zero. This contradicts the computations we just did. To prove the claim, we suppose that $x$ is non zero, so we might write $x=\sum_{i, j} m_{i, j} \otimes c_{i} \otimes d_{i}$ and suppose that the $c_{i}$ are linearly independent and the $d_{j}$ are linearly independent, and we might suppose that $m_{1,1}$ is not zero. Then choosing $f$ and $g$ such that $f\left(c_{i, 1}\right)=\delta_{i, 1}$ and $f\left(c_{j, 1}\right)=\delta_{j, 1}$. We find the $f$ and $g$ as we wished.
This proves that $C$ is endowed with a structure of comodule- $C$.
One can check that the original $C^{\star}$-module structure and the $-C^{\star}$-module structure coincide.
7. If $M$ is a rational module, prove that $N \subset M$ a sub-vector space is a submodule if and only if $\rho(N) \subseteq$ $\iota(N \otimes C)$.

Solution. Let us suppose first that that $\rho(N) \subseteq \iota(N \otimes C)$. Let $n$ be an element of $N$, we write: $\pi \circ \rho(n)=$ $\sum_{i} n_{i} \otimes c_{i}$. Let $f$ be an element of $C^{\star}$. By definition of $\rho$, we have: $f \cdot n=\sum_{i} f\left(c_{i}\right) n_{i}$, and this shows that $N$ is a sub-module.
Let us now suppose that $\rho(n) \notin N \otimes C$ for some $n$ in $N$. We might right $\rho(n)=\sum_{i} n_{i} \otimes c_{i}$ with all the $c_{i}$ linearly independent and $n_{1} \notin N$. We consider $f \in C^{\star}$ a linear for on $C$, such that $f\left(c_{i}\right)=\delta_{i 1}$. Now we can compute $f \cdot n$ :

$$
f \cdot n=\sum_{i} \sum_{i} f\left(c_{i}\right) n_{i}=n_{1} \notin N .
$$

So that $N$ is not a sub-module of $M$


[^0]:    ${ }^{1}$ Georg Frobenius (1849-1917), was a german Mathematician.
    ${ }^{2}$ I mean here that for every $x$, there exists $y$ such that $\langle x, y\rangle \neq 0_{\mathbb{K}}$

