Sheet 5

In this sheet \mathbb{K} is a field, and all algebras, co-algebras and bialgebras are over \mathbb{K}
Problem 1. 1. Let H be a bialgebra and C be a sub-coalgebra of H, prove that the sub-algebra of H generated by C is a sub-bialgebra.
2. Show that a coalgebra C is cocommutative if and only if Δ is a coalgebra map.
3. Let C, D and D^{\prime} be coalgebras such that C is cocommutative, and $f: C \rightarrow D$ and $f^{\prime}: C \rightarrow D^{\prime}$ two coalgebra maps. Define the canonical coalgebra maps $\pi: D \otimes D^{\prime} \rightarrow D$ and $\pi^{\prime}: D \otimes D^{\prime} \rightarrow D$, and prove that there exists a unique map $F: C \rightarrow D \otimes D^{\prime}$ such that the two following diagrams are commutatives.

Problem 2 (Rational modules, second part, see sheet 4). Let be C a coalgebra, and M and M^{\prime} be two rational C^{\star}-modules and L a C^{\star}-module.

1. Prove that if N is a cyclic ${ }^{1}$ sub-module of M then it is finite dimensional
2. Prove that every finitely generated rational module is finite dimensional.
3. Prove that if a C^{\star}-module N is a quotient of M, then it is rational.
4. Prove that $L^{\text {rat }}=\rho^{-1}(L \otimes C)$ is a rational sub-module. Prove that it contains all rational sub-modules of L.
5. Prove that $f: M \rightarrow M^{\prime}$ is a C^{\star}-module map iff f is a comodule- C map.

Problem 3 (Fundamental theorem on Coalgebras). In this exercise C is a coalgebra and c an element of C.

1. Let $\left(C_{i}\right)_{i \in I}$ a collection of subcoalgeras of C. Prove that $\bigcap_{i \in I} C_{i}$ is a coalgebra. Let S be a subset of C, define the notion of coalgebra generated by S.
2. Recall how C is naturally endowed with a structure of C^{\star}-module.
3. Show that the sub- C^{\star}-module N generated by c is finite dimensional (one should use the exercise about rational modules).
4. (A little more difficult) Let $J=\left\{a \in C^{\star} \mid a \cdot N=\{0\}\right\}$. Prove that J^{\perp} is a sub-coalgebra of C and that it is finite dimensional.
5. Prove the following theorem:

Theorem 1. Every coalgebra is a sum ${ }^{2}$ of finite dimensional coalgebras.

[^0]Problem 4. Let $(\mathcal{C}, \otimes, I, a, l, r)$ a (non-strict) monoidal category. In this problem we want to construct a strict monoidal category \mathcal{D} such that \mathcal{C} and \mathcal{D} are tensor equivalent.

1. We start with a (useful) example. Let \mathcal{V} be the monoidal category whose objects are non-negative integers and whose morphisms from m to n are matrices of size $n \times m$ with coefficient in a field \mathbb{K}, tensor products being given by the sum of integers. Prove that this category is tensor equivalent to \mathbb{K}-vect, the category of finite dimensional vector spaces over \mathbb{K}.
2. The objects of \mathcal{D} are finite sequences (the empty sequence is allowed) of objects of \mathcal{C}. We construct at the same time a (tensor) functor $F: \mathcal{D} \rightarrow \mathcal{C}$ even if \mathcal{D} is not completely defined. If $S=\left(V_{1}, V_{2}, \ldots, V_{l}\right)$ is an object of \mathcal{D}, we set $F(S)=\left(\cdots\left(\left(V_{1} \otimes V_{2}\right) \otimes V_{3}\right) \otimes \cdots\right) \otimes V_{l}$ (what should be $F(\emptyset)$?). Define the hom-spaces of \mathcal{D} and the tensor product on objects of \mathcal{D}, denoted by \star.
3. Finish the definition of F and prove that it is fully faithful and essentially surjective (see the script or sheet 1 , for the definitions). This proves that F is an equivalence of category which admit $G: \mathcal{D} \rightarrow \mathcal{C}, G(V)=(V)$ as an inverse.
4. For S and S^{\prime} two objects of \mathcal{D}, let us define $\phi\left(S, S^{\prime}\right): F\left(S \otimes S^{\prime}\right) \rightarrow F\left(S \star S^{\prime}\right)$ inductively on the length of S^{\prime} by:

$$
\begin{aligned}
\phi\left(\emptyset, S^{\prime}\right)=l_{S^{\prime}}, \quad \phi(S, \emptyset) & =r_{S}, \quad \phi\left(S,\left(V_{1}\right)\right)=\operatorname{id}_{F(S) \otimes V_{1}} \quad \text { and } \\
\phi\left(S,\left(V_{1}, \ldots V_{l+1}\right)\right) & =\left(\phi\left(S,\left(V_{1}, \ldots, V_{l}\right)\right) \otimes \operatorname{id}_{V_{l+1}}\right) \circ a_{F(S), F\left(\left(V_{1}, \ldots, V_{l}\right)\right), V_{l+1}}^{-1} .
\end{aligned}
$$

Prove that if S, S^{\prime} and $S^{\prime \prime}$ are objects of \mathcal{D}, we have the following equality:

$$
\phi\left(S, S^{\prime} \star S^{\prime \prime}\right) \circ\left(\operatorname{id}_{S} \otimes \phi\left(S^{\prime}, S^{\prime \prime}\right)\right) \circ a_{F(S), F\left(S^{\prime}\right), F\left(S^{\prime \prime}\right)}=\phi\left(S, S^{\prime} \star S^{\prime \prime}\right) \circ\left(\phi\left(S, S^{\prime}\right) \otimes S^{\prime \prime}\right)
$$

5. Define the tensor product of two morphisms in \mathcal{D} and prove that with this structure C^{\star} is a strict monoidal category.
6. Prove that F and G are tensor functors. Conclude.

[^0]: ${ }^{1}$ This a module generated by one element
 ${ }^{2}$ Just a sum, not a direct sum

