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Sheet 5

In this sheet K is a field, and all algebras, co-algebras and bialgebras are over K

Problem 1. 1. Let H be a bialgebra and C' be a sub-coalgebra of H, prove that the sub-algebra of H generated
by C'is a sub-bialgebra.

2. Show that a coalgebra C' is cocommutative if and only if A is a coalgebra map.

3. Let C, D and D’ be coalgebras such that C' is cocommutative, and f : C — D and f' : C — D’ two
coalgebra maps. Define the canonical coalgebra maps 7 : D ® D' — D and 7’ : D ® D' — D, and prove
that there exists a unique map F' : C' — D ® D’ such that the two following diagrams are commutatives.

D® D’ D® D’
C D C D
f £

Problem 2 (Rational modules, second part, see sheet 4). Let be C' a coalgebra, and M and M’ be two rational
C*-modules and L a C*-module.

1. Prove that if N is a cyclic! sub-module of M then it is finite dimensional.

Solution. Let n be a generator of N. We write p(n) = Y. n; ® ¢;. Now if f is an element of C*, f - n =
> f(ci)n;. Hence N is spanned as a vector space by the n; and is therefor finite dimensional. O

2. Prove that every finitely generated rational module is finite dimensional.

Solution. Same proof as before, with a finite set of generators instead of just one. O

3. Prove that if a C*-module N is a quotient of M, then it is rational.

Solution. Let us write N = M/P and denote # : M — N the canonical projection. The module P is
a submodule of P and hence is rational and is endowed with a comodule-C' structure. There is a unique
comodule-C' structure on M /P making m a comodule-C' morphism. From this comodule structure one can
built an alternative (and rational) C*-module structure. But then 7 is a C*-module map for both C*-module
structure on IN. This structure have to be equal since 7 is surjective. This prove that N is rational. O

This a module generated by one element



4. Prove that L**" = p=!(L ® () is a rational sub-module. Prove that it contains all rational sub-modules of

L.

Solution. Letx € L' and f in C*. We want to show that f - x € L**, this means that p(f - z) € L ® C.
Let us write p(x) = ). x; ® ¢;. Let g be an element of C*. We have:
g-(f-2)=(9f) =«
= Z!Ei(gf)(ci)

= Z zi(g @ f)(Ale:))
= Z szg C1(1 cz(?))

(Cl)

= @jg(c)
J

This means exactly that p(f - ) =, x; ® ¢;. Hence, we have shown that L™" is a C*-module. It is trivial to
show that p(L™ C L™ ® C which means that L' is rational and that it contains any rational submodules
of L. O

5. Prove that ¢ : M — M’ is a C*-module map iff f is a comodule-C map.

Solution. Suppose ¢ : M — M’ is a comodule-C' morphism. Let f be an element of C* and m an element of
M. We write:
f-m= Zm(o)f(mu)) and f-p(m Z b f(d(m) (1))
(m) (6(m))

The map ¢ is suppose to be a map of comodule-C. This means:
) D dlm)) @ ¢(m) 1) = d(m()) @ m1y = (¢ @ idc)(A(m)).
(6(m))
Hence we have:

Z d(m)0)f(@(m)(1))

(6(m))

=Y d(m)) f(ma))
(m)

=9 (Z m(o)f(m(1)))

(m)
= o(f-m).
Which means that ¢ is a morphism of C*-modules.
Let us now suppose that ¢ is a C*-module map. This implies that for any m € M and any f € C*, we have:

Z o(m) o) f( Zﬁb fmy) = o(f - m).
(6(m)) (m)

This implies that A(¢(m)) = -,y #(m()) @ ma)y = (¢ ® id)(A(m)) and thus that ¢ is a comodule
map. O



Problem 3 (Fundamental theorem on Coalgebras). In this exercise C'is a coalgebra and c an element of C.

1. Let (C};)ier a collection of subcoalgeras of C. Prove that ﬂ C is a coalgebra. Let S be a subset of C, define
i€l
the notion of coalgebra generated by S.

Solution. The first assertion is clear. For the second we simply consider the intersection of all sub-coalgebra of
C containing S. O

2. Recall how C' is naturally endowed with a structure of C*-module.

Solution. This is clear, C' is even a rational. O

3. Show that the sub-C*-module N generated by c is finite dimensional (one should use the exercise about
rational modules).

Solution. N is a submodule of a rational module, hence it is rational. Furthermore it is cyclic, so that it is finite
dimensional. O

4. (A little more difficult) Let J = {a € C*|a- N = {0}}. Prove that J= is a sub-coalgebra of C' and that it
is finite dimensional.

Solution. J is the kernel of m : C* — Endg(IN) which is an algebra map. Hence we can deduce that J
is a ideal of C* with finite codimension. We claim that with this single hypothesis, we can deduce J= is a
finite dimensional sub-coalgebra of C': Indeed, one can check that if x is an element of J*, then A(x) is in
JteonC e Jt=Jr e JL, sothat J* isa co-algebra.

Let us recall the definition of J* and of (J*)* and prove that J C (J+)+2:
Jt={beC|f(b)=0forallf € J} and (J*)" ={ge C*|g(b)=0forallbe J"}.

Let f be an element of J and let b be an element of J*. By definition of J*, f(b) = 0. This is valid for every b,
hence f is in (J1)L. The converse does not hold (J might not be a vector space for example). Let us prove that
dim J+ = codim (J1)*. Actually V* ~ Cx/V* holds for every sub-space V of C. IfV is finite dimensional,
this gives what we wanted. In the end, we have dim(J+) = codim (J*)* < codim J < +oo0. O

5. Prove the following theorem:

Theorem 1. Every coalgebra is a sum® of finite dimensional coalgebras.

Solution. Every coalgebra is the sum of all the subcoalgebra generated by one element which are finite dimen-
sional, as we have just seen it. O

This was indeed completly obvious.
3Just a sum, not a direct sum



Problem 4. Let (C,®,1,a,l,r) a (non-strict) monoidal category. In this problem we want to construct a strict
monoidal category D such that C and D are tensor equivalent.

1. We start with a (useful) example. Let V be the monoidal category whose objects are non-negative integers
and whose morphisms from m to n are matrices of size n x m with coefficient in a field K, tensor products
being given by the sum of integers. Prove that this category is tensor equivalent to K-vect, the category
of finite dimensional vector spaces over K.

2. The objects of D are finite sequences (the empty sequence is allowed) of objects of C. We construct at the
same time a (tensor) functor F' : D — C even if D is not completely defined. If S = (V4,Va,..., V) is
an object of D, we set FI(S) = (--- (V1 @ Vo) ® V3) ® --+) ® V; (what should be F((})?). Define the
hom-spaces of D and the tensor product on objects of D, denoted by *.

Solution. The problem and its solution are derived from Quantum Groups from Christian Kassel. We define
F(0) = I and Homp (S, S’) = Home (F(S), F(S’)). The composition and the identity morphisms in D are
given by the composition and the identity morphisms in C. The (strict) tensor product on objects of D is given
by the concatenation of sequences. The empty sequence being the unit. O

3. Finish the definition of F and prove that it is fully faithful and essentially surjective (see the script or sheet 1,
for the definitions). This proves that F' is an equivalence of category whichadmit G : D — C,G(V) = (V)
as an inverse.

Solution. The definition of ' on the hom-spaces is completely trivial since it is really the identity map on each
home-space. For this reason, the functor F' is clearly fully faithful. It is as-well essentially surjective, since any
object V of C is equal (and hence isomorphic) to the image by F' of the sequence (V') of length one with V as
the only element of this sequence. Thanks to a theorem we proved earlier this gives that I is an equivalence of
category. The proof of this theorem shows that we can indeed take G as prescribed to be an inverse. O

4. For S and S’ two objects of D, let us define ¢(S,5") : F(S) ® F(S’) — F(S * S’) inductively on the
length of S’ by:
(b(@, S/) = lS'a ¢(Sv Q)) =Ts, ¢(Sa (Vl)) = idF(S)(X)Vl and
A8, (Vi Vigr)) = (&S, Vi, -, V) ®1dvisy) © Q) p((va.n vi)) Vi

Prove that if S, S” and S” are objects of D, we have the following equality:

¢<S7 Sl * S”) o (ldF(S) & qb(S', S”)) O QF(S),F(S"),F(5") = (b(S, S/ * S”) o (¢(S, S/) ® idF(S”))-

Solution. The maps ¢ should be thought as “re-parenthesisation”.

Note that this is exactly the “compatibility with the associativity” of definition 2.4.6 in the sckript because the
associators in D are identity morphisms. This is done by induction on the length of S”: If S” = (), we have:

$(S,8") o (ids ® ¢(S",0)) 0 ap(s),p(s),r = #(S,8") o (ids @ rp(s)) © ar(s),F(s).1
= ¢(5,8") orp(s)0r(s7)
=rps)ers) © (¢(S,58") ®idr)
=¢(S*S",0) 0 (¢(S,8) @idy)



Let know V' be an object of the category C. Let us suppose that the equality holds for the sequences S, S’ and
S,
(S, 5% 5" % (V) o (idr(s) ® (5", 8" % (V) 0 ar(s),r(sn),mis+v))

= (6(8, 8" *§") @idv) 0 ap(s) p(siesny,y © (idr(s) @ (6(S', ") @idy))

o (idF(S) & a;%s,)vF(S/,)y) O ap($),F(S"),F(S")®V
= (6(5, 58" x8") @idv) o ((idp(s) ® ¢(5',5")) ®idv) 0 ap(s) psnrs)v

. -1
o (ldF(S) ® aF(S’),F(S”),V) o aF(S),F(;S”),F(S”)@V

(6(S,8" % 8") @idy) o ((idpes) ® ¢(S",8")) @idv ) o (apes),r(s,ps7) @1dv) © apsygr(s) (s
(B(S*5',8") @idv) o ((6(S,5") @ idp(sr) @idv) 0 Gpigimr(s) F(sm).v

(6(S*8",8") @idv) 0 agp g, s prsm.y © (6(5,5) @ (idpsm ©idv))

(S5, 8" % (V) o (4(S,5) @idrsra(vy)

5. Define the tensor product of two morphisms in D and prove that with this structure C* is a strict monoidal
category.

Solution. In the end we want the following diagrams to commutes:

F(S) @ F(5) —22%) | p(sx s

F(f)®F(g)i J{F(f*g)
F(T) o F(T) —L1 (1T

This defines the tensor product on D completely because F is trivial on the hom-space. One verify easily that
* is a functor, and it is strictly associative by construction. O

6. Prove that I’ and G are tensor functors. Conclude.

Solution. This is to be understood as “prove that F' and G can be completed as tensor functors”. The triple
(F,idy, @) is a tensor functor since the question 4 tells us that the required equalities (of the definition 2.4.6 of
the script) hold (right and left unit constraint follow from the definition of ¢(S,0) and ¢(0), S)). The triple
(G,id,id) is as well a tensor functor (the id’s should be widely understood). Finally FG = id¢, and the
natural isomorphism 0 : GF — idp given by 0(S) = idp(s) is a tensor natural transformation so that C and
D are tensor equivalent. O



