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Problem 1. 1. LetH be a bialgebra andC be a sub-coalgebra ofH , prove that the sub-algebra ofH generated
by C is a sub-bialgebra.

2. Show that a coalgebra C is cocommutative if and only if ∆ is a coalgebra map.

3. Let C , D and D′ be coalgebras such that C is cocommutative, and f : C → D and f ′ : C → D′ two
coalgebra maps. De�ne the canonical coalgebra maps π : D ⊗D′ → D and π′ : D ⊗D′ → D, and prove
that there exists a unique map F : C → D ⊗D′ such that the two following diagrams are commutatives.

D ⊗D′
π

##
C

F

;;

f
// D

D ⊗D′
π′

##
C

F

;;

f ′
// D

Problem 2 (Rational modules, second part, see sheet 4). Let be C a coalgebra, andM andM ′ be two rational
C?-modules and L a C?-module.

1. Prove that if N is a cyclic1 sub-module ofM then it is �nite dimensional.

Solution. Let n be a generator of N . We write ρ(n) =
∑
i ni ⊗ ci. Now if f is an element of C?, f · n =∑

i f(ci)ni. Hence N is spanned as a vector space by the ni and is therefor �nite dimensional.

2. Prove that every �nitely generated rational module is �nite dimensional.

Solution. Same proof as before, with a �nite set of generators instead of just one.

3. Prove that if a C?-module N is a quotient ofM , then it is rational.

Solution. Let us write N = M/P and denote π : M → N the canonical projection. �e module P is
a submodule of P and hence is rational and is endowed with a comodule-C structure. �ere is a unique
comodule-C structure on M/P making π a comodule-C morphism. From this comodule structure one can
built an alternative (and rational) C?-module structure. But then π is a C?-module map for both C?-module
structure on N . �is structure have to be equal since π is surjective. �is prove that N is rational.

1�is a module generated by one element
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4. Prove that Lrat = ρ−1(L⊗C) is a rational sub-module. Prove that it contains all rational sub-modules of
L.

Solution. Let x ∈ Lrat and f in C?. We want to show that f · x ∈ Lrat, this means that ρ(f · x) ∈ L ⊗ C .
Let us write ρ(x) =

∑
i xi ⊗ ci. Let g be an element of C?. We have:

g · (f · x) = (gf) · x

=
∑
i

xi(gf)(ci)

=
∑
i

xi(g ⊗ f)(∆(ci))

=
∑
i

∑
(ci)

xig(ci(1))f(ci(2))

=
∑
j

x′jg(c′j).

�is means exactly that ρ(f ·x) =
∑
j x
′
j ⊗ c′j . Hence, we have shown that Lrat is a C?-module. It is trivial to

show that ρ(Lrat ⊂ Lrat ⊗ C which means that Lrat is rational and that it contains any rational submodules
of L.

5. Prove that φ : M →M ′ is a C?-module map i� f is a comodule-C map.

Solution. Suppose φ : M →M ′ is a comodule-C morphism. Let f be an element of C? andm an element of
M . We write:

f ·m =
∑
(m)

m(0)f(m(1)) and f · φ(m) =
∑

(φ(m))

φ(0)f(φ(m)(1)).

�e map φ is suppose to be a map of comodule-C . �is means:

∆(φ(m))
∑

(φ(m))

φ(m)(0) ⊗ φ(m)(1) = φ(m(0))⊗m(1) = (φ⊗ idC)(∆(m)).

Hence we have:

f · φ(m) =
∑

(φ(m))

φ(m)(0)f(φ(m)(1))

=
∑
(m)

φ(m(0))f(m(1))

= φ

∑
(m)

m(0)f(m(1))


= φ(f ·m).

Which means that φ is a morphism of C?-modules.

Let us now suppose that φ is a C?-module map. �is implies that for anym ∈M and any f ∈ C?, we have:

f · φ(m) =
∑

(φ(m))

φ(m)(0)f(φ(m)(1)) =
∑
(m)

φ(m(0))f(m(1)) = φ(f ·m).

�is implies that ∆(φ(m)) =
∑

(m) φ(m(0)) ⊗ m(1) = (φ ⊗ id)(∆(m)) and thus that φ is a comodule
map.
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Problem 3 (Fundamental theorem on Coalgebras). In this exercise C is a coalgebra and c an element of C .

1. Let (Ci)i∈I a collection of subcoalgeras ofC . Prove that
⋂
i∈I

Ci is a coalgebra. Let S be a subset ofC , de�ne

the notion of coalgebra generated by S.

Solution. �e �rst assertion is clear. For the second we simply consider the intersection of all sub-coalgebra of
C containing S.

2. Recall how C is naturally endowed with a structure of C?-module.

Solution. �is is clear, C is even a rational.

3. Show that the sub-C?-module N generated by c is �nite dimensional (one should use the exercise about
rational modules).

Solution. N is a submodule of a rational module, hence it is rational. Furthermore it is cyclic, so that it is �nite
dimensional.

4. (A li�le more di�cult) Let J = {a ∈ C?|a ·N = {0}}. Prove that J⊥ is a sub-coalgebra of C and that it
is �nite dimensional.

Solution. J is the kernel of π : C? → EndK(N) which is an algebra map. Hence we can deduce that J
is a ideal of C? with �nite codimension. We claim that with this single hypothesis, we can deduce J⊥ is a
�nite dimensional sub-coalgebra of C : Indeed, one can check that if x is an element of J⊥, then ∆(x) is in
J⊥ ⊗ C ∩ C ⊗ J⊥ = J⊥ ⊗ J⊥, so that J⊥ is a co-algebra.

Let us recall the de�nition of J⊥ and of (J⊥)⊥ and prove that J ⊂ (J⊥)⊥2:

J⊥ = {b ∈ C|f(b) = 0 for all f ∈ J} and (J⊥)⊥ =
{
g ∈ C?|g(b) = 0 for all b ∈ J⊥

}
.

Let f be an element of J and let b be an element of J⊥. By de�nition of J⊥, f(b) = 0. �is is valid for every b,
hence f is in (J⊥)⊥. �e converse does not hold (J might not be a vector space for example). Let us prove that
dim J⊥ = codim (J⊥)⊥. ActuallyV ? ' C?/V ⊥ holds for every sub-spaceV ofC . IfV is �nite dimensional,
this gives what we wanted. In the end, we have dim(J⊥) = codim (J⊥)⊥ ≤ codim J < +∞.

5. Prove the following theorem:

�eorem 1. Every coalgebra is a sum3 of �nite dimensional coalgebras.

Solution. Every coalgebra is the sum of all the subcoalgebra generated by one element which are �nite dimen-
sional, as we have just seen it.

2�is was indeed completly obvious.
3Just a sum, not a direct sum

3



Problem 4. Let (C,⊗, I, a, l, r) a (non-strict) monoidal category. In this problem we want to construct a strict
monoidal category D such that C and D are tensor equivalent.

1. We start with a (useful) example. Let V be the monoidal category whose objects are non-negative integers
and whose morphisms fromm to n are matrices of size n×mwith coe�cient in a �eldK, tensor products
being given by the sum of integers. Prove that this category is tensor equivalent to K-vect, the category
of �nite dimensional vector spaces over K.

2. �e objects of D are �nite sequences (the empty sequence is allowed) of objects of C. We construct at the
same time a (tensor) functor F : D → C even if D is not completely de�ned. If S = (V1, V2, . . . , Vl) is
an object of D, we set F (S) = (· · · ((V1 ⊗ V2) ⊗ V3) ⊗ · · · ) ⊗ Vl (what should be F (∅)?). De�ne the
hom-spaces of D and the tensor product on objects of D, denoted by ?.

Solution. �e problem and its solution are derived from �antum Groups from Christian Kassel. We de�ne
F (∅) = I and HomD(S, S′) = HomC(F (S), F (S′)). �e composition and the identity morphisms in D are
given by the composition and the identity morphisms in C. �e (strict) tensor product on objects of D is given
by the concatenation of sequences. �e empty sequence being the unit.

3. Finish the de�nition ofF and prove that it is fully faithful and essentially surjective (see the script or sheet 1,
for the de�nitions). �is proves that F is an equivalence of category which admitG : D → C, G(V ) = (V )
as an inverse.

Solution. �e de�nition of F on the hom-spaces is completely trivial since it is really the identity map on each
home-space. For this reason, the functor F is clearly fully faithful. It is as-well essentially surjective, since any
object V of C is equal (and hence isomorphic) to the image by F of the sequence (V ) of length one with V as
the only element of this sequence. �anks to a theorem we proved earlier this gives that F is an equivalence of
category. �e proof of this theorem shows that we can indeed take G as prescribed to be an inverse.

4. For S and S′ two objects of D, let us de�ne φ(S, S′) : F (S) ⊗ F (S′) → F (S ? S′) inductively on the
length of S′ by:

φ(∅, S′) = lS′ , φ(S, ∅) = rS , φ(S, (V1)) = idF (S)⊗V1
and

φ(S, (V1, . . . Vl+1)) = (φ(S, (V1, . . . , Vl))⊗ idVl+1
) ◦ a−1F (S),F ((V1,...,Vl)),Vl+1

.

Prove that if S, S′ and S′′ are objects of D, we have the following equality:

φ(S, S′ ? S′′) ◦ (idF (S) ⊗ φ(S′, S′′)) ◦ aF (S),F (S′),F (S′′) = φ(S, S′ ? S′′) ◦ (φ(S, S′)⊗ idF (S′′)).

Solution. �e maps φ should be thought as “re-parenthesisation”.

Note that this is exactly the “compatibility with the associativity” of de�nition 2.4.6 in the sckript because the
associators in D are identity morphisms. �is is done by induction on the length of S′′: If S′′ = ∅, we have:

φ(S, S′) ◦ (idS ⊗ φ(S′, ∅)) ◦ aF (S),F (S′),I = φ(S, S′) ◦ (idS ⊗ rF (S′)) ◦ aF (S),F (S′),I

= φ(S, S′) ◦ rF (S)⊗F (S′)

= rF (S)⊗F (S′) ◦ (φ(S, S′)⊗ idI)

= φ(S ? S′, ∅) ◦ (φ(S, S′)⊗ idI)
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Let know V be an object of the category C. Let us suppose that the equality holds for the sequences S, S′ and
S′′.

φ(S, S′ ? S′′ ? (V )) ◦
(
idF (S) ⊗ φ(S′, S′′ ? (V ))

)
◦ aF (S),F (S′),F (S′′?(V ))

= (φ(S, S′ ? S′′)⊗ idV ) ◦ a−1F (S),F (S′?S′′),V ◦
(
idF (S) ⊗ (φ(S′, S′′)⊗ idV )

)
◦
(

idF (S) ⊗ a−1F (S′),F (S′′),V

)
◦ aF (S),F (S′),F (S′′)⊗V

= (φ(S, S′ ? S′′)⊗ idV ) ◦
(
(idF (S) ⊗ φ(S′, S′′))⊗ idV

)
◦ a−1F (S),F (S′)⊗F (S′′),V

◦
(

idF (S) ⊗ a−1F (S′),F (S′′),V

)
◦ aF (S),F (S′),F (S′′)⊗V

= (φ(S, S′ ? S′′)⊗ idV ) ◦
(
(idF (S) ⊗ φ(S′, S′′))⊗ idV

)
◦ (aF (S),F (S′),F (S′′) ⊗ idV ) ◦ a−1F (S)⊗F (S′),F (S′′),V

= (φ(S ? S′, S′′)⊗ idV ) ◦
(
(φ(S, S′)⊗ idF (S′′))⊗ idV

)
◦ a−1F (S)⊗F (S′),F (S′′),V

= (φ(S ? S′, S′′)⊗ idV ) ◦ a−1F (S?S′),F (S′′),V ◦
(
φ(S, S′)⊗ (idF (S′′) ⊗ idV )

)
= φ(S ? S′, S′′ ? (V )) ◦

(
φ(S, S′)⊗ idF (S′′?(V ))

)

5. De�ne the tensor product of two morphisms inD and prove that with this structureC? is a strict monoidal
category.

Solution. In the end we want the following diagrams to commutes:

F (S)⊗ F (S′)
φ(S,S′) //

F (f)⊗F (g)

��

F (S ? S′)

F (f?g)

��
F (T )⊗ F (T ′)

φ(T,T ′) // F (T ? T ′)

�is de�nes the tensor product on D completely because F is trivial on the hom-space. One verify easily that
? is a functor, and it is strictly associative by construction.

6. Prove that F and G are tensor functors. Conclude.

Solution. �is is to be understood as “prove that F and G can be completed as tensor functors”. �e triple
(F, idI , φ) is a tensor functor since the question 4 tells us that the required equalities (of the de�nition 2.4.6 of
the script) hold (right and le� unit constraint follow from the de�nition of φ(S, ∅) and φ(∅), S)). �e triple
(G, id, id) is as well a tensor functor (the id’s should be widely understood). Finally FG = idC , and the
natural isomorphism θ : GF → idD given by θ(S) = idF (S) is a tensor natural transformation so that C and
D are tensor equivalent.
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