Sheet 5

In this sheet \mathbb{K} is a field, and all algebras, co-algebras and bialgebras are over \mathbb{K}
Problem 1. 1. Let H be a bialgebra and C be a sub-coalgebra of H, prove that the sub-algebra of H generated by C is a sub-bialgebra.
2. Show that a coalgebra C is cocommutative if and only if Δ is a coalgebra map.
3. Let C, D and D^{\prime} be coalgebras such that C is cocommutative, and $f: C \rightarrow D$ and $f^{\prime}: C \rightarrow D^{\prime}$ two coalgebra maps. Define the canonical coalgebra maps $\pi: D \otimes D^{\prime} \rightarrow D$ and $\pi^{\prime}: D \otimes D^{\prime} \rightarrow D$, and prove that there exists a unique map $F: C \rightarrow D \otimes D^{\prime}$ such that the two following diagrams are commutatives.

Problem 2 (Rational modules, second part, see sheet 4). Let be C a coalgebra, and M and M^{\prime} be two rational C^{\star}-modules and L a C^{\star}-module.

1. Prove that if N is a cyclic ${ }^{1}$ sub-module of M then it is finite dimensional.

Solution. Let n be a generator of N. We write $\rho(n)=\sum_{i} n_{i} \otimes c_{i}$. Now if f is an element of $C^{\star}, f \cdot n=$ $\sum_{i} f\left(c_{i}\right) n_{i}$. Hence N is spanned as a vector space by the n_{i} and is therefor finite dimensional.
2. Prove that every finitely generated rational module is finite dimensional.

Solution. Same proof as before, with a finite set of generators instead of just one.
3. Prove that if a C^{\star}-module N is a quotient of M, then it is rational.

Solution. Let us write $N=M / P$ and denote $\pi: M \rightarrow N$ the canonical projection. The module P is a submodule of P and hence is rational and is endowed with a comodule- C structure. There is a unique comodule-C structure on M / P making π a comodule- C morphism. From this comodule structure one can built an alternative (and rational) C^{\star}-module structure. But then π is a C^{\star}-module map for both C^{\star}-module structure on N. This structure have to be equal since π is surjective. This prove that N is rational.

[^0]4. Prove that $L^{\text {rat }}=\rho^{-1}(L \otimes C)$ is a rational sub-module. Prove that it contains all rational sub-modules of L.

Solution. Let $x \in L^{\text {rat }}$ and f in C^{\star}. We want to show that $f \cdot x \in L^{\text {rat }}$, this means that $\rho(f \cdot x) \in L \otimes C$. Let us write $\rho(x)=\sum_{i} x_{i} \otimes c_{i}$. Let g be an element of C^{\star}. We have:

$$
\begin{aligned}
g \cdot(f \cdot x) & =(g f) \cdot x \\
& =\sum_{i} x_{i}(g f)\left(c_{i}\right) \\
& =\sum_{i} x_{i}(g \otimes f)\left(\Delta\left(c_{i}\right)\right) \\
& =\sum_{i} \sum_{\left(c_{i}\right)} x_{i} g\left(c_{i(1)}\right) f\left(c_{i(2)}\right) \\
& =\sum_{j} x_{j}^{\prime} g\left(c_{j}^{\prime}\right) .
\end{aligned}
$$

This means exactly that $\rho(f \cdot x)=\sum_{j} x_{j}^{\prime} \otimes c_{j}^{\prime}$. Hence, we have shown that $L^{\text {rat }}$ is a C^{\star}-module. It is trivial to show that $\rho\left(L^{\text {rat }} \subset L^{\text {rat }} \otimes C\right.$ which means that $L^{\text {rat }}$ is rational and that it contains any rational submodules of L.
5. Prove that $\phi: M \rightarrow M^{\prime}$ is a C^{\star}-module map iff f is a comodule- C map.

Solution. Suppose $\phi: M \rightarrow M^{\prime}$ is a comodule-C morphism. Let f be an element of C^{\star} and m an element of M. We write:

$$
f \cdot m=\sum_{(m)} m_{(0)} f\left(m_{(1)}\right) \quad \text { and } \quad f \cdot \phi(m)=\sum_{(\phi(m))} \phi_{(0)} f\left(\phi(m)_{(1)}\right) .
$$

The map ϕ is suppose to be a map of comodule-C. This means:

$$
\Delta(\phi(m)) \sum_{(\phi(m))} \phi(m)_{(0)} \otimes \phi(m)_{(1)}=\phi\left(m_{(0)}\right) \otimes m_{(1)}=\left(\phi \otimes \operatorname{id}_{C}\right)(\Delta(m))
$$

Hence we have:

$$
\begin{aligned}
f \cdot \phi(m) & =\sum_{(\phi(m))} \phi(m)_{(0)} f\left(\phi(m)_{(1)}\right) \\
& =\sum_{(m)} \phi\left(m_{(0)}\right) f\left(m_{(1)}\right) \\
& =\phi\left(\sum_{(m)} m_{(0)} f\left(m_{(1)}\right)\right) \\
& =\phi(f \cdot m)
\end{aligned}
$$

Which means that ϕ is a morphism of C^{\star}-modules.
Let us now suppose that ϕ is a C^{\star}-module map. This implies that for any $m \in M$ and any $f \in C^{\star}$, we have:

$$
f \cdot \phi(m)=\sum_{(\phi(m))} \phi(m)_{(0)} f\left(\phi(m)_{(1)}\right)=\sum_{(m)} \phi\left(m_{(0)}\right) f\left(m_{(1)}\right)=\phi(f \cdot m) .
$$

This implies that $\Delta(\phi(m))=\sum_{(m)} \phi\left(m_{(0)}\right) \otimes m_{(1)}=(\phi \otimes \mathrm{id})(\Delta(m))$ and thus that ϕ is a comodule map.

Problem 3 (Fundamental theorem on Coalgebras). In this exercise C is a coalgebra and c an element of C.

1. Let $\left(C_{i}\right)_{i \in I}$ a collection of subcoalgeras of C. Prove that $\bigcap_{i \in I} C_{i}$ is a coalgebra. Let S be a subset of C, define the notion of coalgebra generated by S.

Solution. The first assertion is clear. For the second we simply consider the intersection of all sub-coalgebra of C containing S.
2. Recall how C is naturally endowed with a structure of C^{\star}-module.

Solution. This is clear, C is even a rational.
3. Show that the sub- C^{\star}-module N generated by c is finite dimensional (one should use the exercise about rational modules).

Solution. N is a submodule of a rational module, hence it is rational. Furthermore it is cyclic, so that it is finite dimensional.
4. (A little more difficult) Let $J=\left\{a \in C^{\star} \mid a \cdot N=\{0\}\right\}$. Prove that J^{\perp} is a sub-coalgebra of C and that it is finite dimensional.

Solution. J is the kernel of $\pi: C^{\star} \rightarrow \operatorname{End}_{\mathbb{K}}(N)$ which is an algebra map. Hence we can deduce that J is a ideal of C^{\star} with finite codimension. We claim that with this single hypothesis, we can deduce J^{\perp} is a finite dimensional sub-coalgebra of C : Indeed, one can check that if x is an element of J^{\perp}, then $\Delta(x)$ is in $J^{\perp} \otimes C \cap C \otimes J^{\perp}=J^{\perp} \otimes J^{\perp}$, so that J^{\perp} is a co-algebra.
Let us recall the definition of J^{\perp} and of $\left(J^{\perp}\right)^{\perp}$ and prove that $J \subset\left(J^{\perp}\right)^{\perp 2}$:

$$
J^{\perp}=\{b \in C \mid f(b)=0 \text { for all } f \in J\} \quad \text { and } \quad\left(J^{\perp}\right)^{\perp}=\left\{g \in C^{\star} \mid g(b)=0 \text { for all } b \in J^{\perp}\right\}
$$

Let f be an element of J and let b be an element of J^{\perp}. By definition of $J^{\perp}, f(b)=0$. This is valid for every b, hence f is in $\left(J^{\perp}\right)^{\perp}$. The converse does not hold (J might not be a vector space for example). Let us prove that $\operatorname{dim} J^{\perp}=\operatorname{codim}\left(J^{\perp}\right)^{\perp}$. Actually $V^{\star} \simeq C \star / V^{\perp}$ holds for every sub-space V of C. If V is finite dimensional, this gives what we wanted. In the end, we have $\operatorname{dim}\left(J^{\perp}\right)=\operatorname{codim}\left(J^{\perp}\right)^{\perp} \leq \operatorname{codim} J<+\infty$.
5. Prove the following theorem:

Theorem 1. Every coalgebra is a sum ${ }^{3}$ of finite dimensional coalgebras.

Solution. Every coalgebra is the sum of all the subcoalgebra generated by one element which are finite dimensional, as we have just seen it.

[^1]Problem 4. Let $(\mathcal{C}, \otimes, I, a, l, r)$ a (non-strict) monoidal category. In this problem we want to construct a strict monoidal category \mathcal{D} such that \mathcal{C} and \mathcal{D} are tensor equivalent.

1. We start with a (useful) example. Let \mathcal{V} be the monoidal category whose objects are non-negative integers and whose morphisms from m to n are matrices of size $n \times m$ with coefficient in a field \mathbb{K}, tensor products being given by the sum of integers. Prove that this category is tensor equivalent to \mathbb{K}-vect, the category of finite dimensional vector spaces over \mathbb{K}.
2. The objects of \mathcal{D} are finite sequences (the empty sequence is allowed) of objects of \mathcal{C}. We construct at the same time a (tensor) functor $F: \mathcal{D} \rightarrow \mathcal{C}$ even if \mathcal{D} is not completely defined. If $S=\left(V_{1}, V_{2}, \ldots, V_{l}\right)$ is an object of \mathcal{D}, we set $F(S)=\left(\cdots\left(\left(V_{1} \otimes V_{2}\right) \otimes V_{3}\right) \otimes \cdots\right) \otimes V_{l}$ (what should be $F(\emptyset)$?). Define the hom-spaces of \mathcal{D} and the tensor product on objects of \mathcal{D}, denoted by \star.

Solution. The problem and its solution are derived from Quantum Groups from Christian Kassel. We define $F(\emptyset)=I$ and $\operatorname{Hom}_{\mathcal{D}}\left(S, S^{\prime}\right)=\operatorname{Hom}_{\mathcal{C}}\left(F(S), F\left(S^{\prime}\right)\right)$. The composition and the identity morphisms in \mathcal{D} are given by the composition and the identity morphisms in \mathcal{C}. The (strict) tensor product on objects of \mathcal{D} is given by the concatenation of sequences. The empty sequence being the unit.
3. Finish the definition of F and prove that it is fully faithful and essentially surjective (see the script or sheet 1 , for the definitions). This proves that F is an equivalence of category which admit $G: \mathcal{D} \rightarrow \mathcal{C}, G(V)=(V)$ as an inverse.

Solution. The definition of F on the hom-spaces is completely trivial since it is really the identity map on each home-space. For this reason, the functor F is clearly fully faithful. It is as-well essentially surjective, since any object V of \mathcal{C} is equal (and hence isomorphic) to the image by F of the sequence (V) of length one with V as the only element of this sequence. Thanks to a theorem we proved earlier this gives that F is an equivalence of category. The proof of this theorem shows that we can indeed take G as prescribed to be an inverse.
4. For S and S^{\prime} two objects of \mathcal{D}, let us define $\phi\left(S, S^{\prime}\right): F(S) \otimes F\left(S^{\prime}\right) \rightarrow F\left(S \star S^{\prime}\right)$ inductively on the length of S^{\prime} by:

$$
\begin{aligned}
\phi\left(\emptyset, S^{\prime}\right)=l_{S^{\prime}}, \quad \phi(S, \emptyset) & =r_{S}, \quad \phi\left(S,\left(V_{1}\right)\right)=\operatorname{id}_{F(S) \otimes V_{1}} \quad \text { and } \\
\phi\left(S,\left(V_{1}, \ldots V_{l+1}\right)\right) & =\left(\phi\left(S,\left(V_{1}, \ldots, V_{l}\right)\right) \otimes \operatorname{id}_{V_{l+1}}\right) \circ a_{F(S), F\left(\left(V_{1}, \ldots, V_{l}\right)\right), V_{l+1}}^{-1} .
\end{aligned}
$$

Prove that if S, S^{\prime} and $S^{\prime \prime}$ are objects of \mathcal{D}, we have the following equality:

$$
\phi\left(S, S^{\prime} \star S^{\prime \prime}\right) \circ\left(\operatorname{id}_{F(S)} \otimes \phi\left(S^{\prime}, S^{\prime \prime}\right)\right) \circ a_{F(S), F\left(S^{\prime}\right), F\left(S^{\prime \prime}\right)}=\phi\left(S, S^{\prime} \star S^{\prime \prime}\right) \circ\left(\phi\left(S, S^{\prime}\right) \otimes \operatorname{id}_{F\left(S^{\prime \prime}\right)}\right)
$$

Solution. The maps ϕ should be thought as "re-parenthesisation".
Note that this is exactly the "compatibility with the associativity" of definition 2.4.6 in the sckript because the associators in \mathcal{D} are identity morphisms. This is done by induction on the length of $S^{\prime \prime}:$ If $S^{\prime \prime}=\emptyset$, we have:

$$
\begin{aligned}
\phi\left(S, S^{\prime}\right) \circ\left(\operatorname{id}_{S} \otimes \phi\left(S^{\prime}, \emptyset\right)\right) \circ a_{F(S), F\left(S^{\prime}\right), I} & =\phi\left(S, S^{\prime}\right) \circ\left(\mathrm{id}_{S} \otimes r_{F\left(S^{\prime}\right)}\right) \circ a_{F(S), F\left(S^{\prime}\right), I} \\
& =\phi\left(S, S^{\prime}\right) \circ r_{F(S) \otimes F\left(S^{\prime}\right)} \\
& =r_{F(S) \otimes F\left(S^{\prime}\right) \circ\left(\phi\left(S, S^{\prime}\right) \otimes \operatorname{id}_{I}\right)} \\
& =\phi\left(S \star S^{\prime}, \emptyset\right) \circ\left(\phi\left(S, S^{\prime}\right) \otimes \operatorname{id}_{I}\right)
\end{aligned}
$$

Let know V be an object of the category \mathcal{C}. Let us suppose that the equality holds for the sequences S, S^{\prime} and $S^{\prime \prime}$.

$$
\begin{aligned}
& \phi\left(S, S^{\prime} \star S^{\prime \prime} \star(V)\right) \circ\left(\operatorname{id}_{F(S)} \otimes \phi\left(S^{\prime}, S^{\prime \prime} \star(V)\right)\right) \circ a_{F(S), F\left(S^{\prime}\right), F\left(S^{\prime \prime} \star(V)\right)} \\
& =\left(\phi\left(S, S^{\prime} \star S^{\prime \prime}\right) \otimes \operatorname{id}_{V}\right) \circ a_{F(S), F\left(S^{\prime} \star S^{\prime \prime}\right), V}^{-1} \circ\left(\operatorname{id}_{F(S)} \otimes\left(\phi\left(S^{\prime}, S^{\prime \prime}\right) \otimes \mathrm{id}_{V}\right)\right) \\
& \quad \circ\left(\mathrm{id}_{F(S)} \otimes a_{F\left(S^{\prime}\right), F\left(S^{\prime \prime}\right), V}^{-1}\right) \circ a_{F(S), F\left(S^{\prime}\right), F\left(S^{\prime \prime}\right) \otimes V} \\
& =\left(\phi\left(S, S^{\prime} \star S^{\prime \prime}\right) \otimes \operatorname{id}_{V}\right) \circ\left(\left(\operatorname{id}_{F(S)} \otimes \phi\left(S^{\prime}, S^{\prime \prime}\right)\right) \otimes \operatorname{id}_{V}\right) \circ a_{F(S), F\left(S^{\prime}\right) \otimes F\left(S^{\prime \prime}\right), V}^{-1} \\
& \quad \circ\left(\operatorname{id}_{F(S)} \otimes a_{F\left(S^{\prime}\right), F\left(S^{\prime \prime}\right), V}^{-1}\right) \circ a_{F(S), F\left(S^{\prime}\right), F\left(S^{\prime \prime}\right) \otimes V} \\
& =\left(\phi\left(S, S^{\prime} \star S^{\prime \prime}\right) \otimes \operatorname{id}_{V}\right) \circ\left(\left(\operatorname{id}_{F(S)} \otimes \phi\left(S^{\prime}, S^{\prime \prime}\right)\right) \otimes \operatorname{id}_{V}\right) \circ\left(a_{F(S), F\left(S^{\prime}\right), F\left(S^{\prime \prime}\right)} \otimes \operatorname{id}_{V}\right) \circ a_{F(S) \otimes F\left(S^{\prime}\right), F\left(S^{\prime \prime}\right), V}^{-1} \\
& =\left(\phi\left(S \star S^{\prime}, S^{\prime \prime \prime}\right) \otimes \operatorname{id}_{V}\right) \circ\left(\left(\phi\left(S, S^{\prime}\right) \otimes \operatorname{id}_{F\left(S^{\prime \prime}\right)}\right) \otimes \operatorname{id}_{V}\right) \circ a_{F(S) \otimes F\left(S^{\prime}\right), F\left(S^{\prime \prime}\right), V}^{-1} \\
& \left.=\left(\phi\left(S \star S^{\prime}, S^{\prime \prime}\right) \otimes \operatorname{id}_{V}\right) \circ a_{F\left(S \star S^{\prime}\right), F\left(S^{\prime \prime}\right), V}^{-1} \circ\left(\phi\left(S, S^{\prime}\right) \otimes\left(\operatorname{id}_{F\left(S^{\prime \prime}\right)}\right) \operatorname{id}_{V}\right)\right) \\
& =\phi\left(S \star S^{\prime}, S^{\prime \prime} \star(V)\right) \circ\left(\phi\left(S, S^{\prime}\right) \otimes \operatorname{id}_{F\left(S^{\prime \prime} \star(V)\right)}\right)
\end{aligned}
$$

5. Define the tensor product of two morphisms in \mathcal{D} and prove that with this structure C^{\star} is a strict monoidal category.

Solution. In the end we want the following diagrams to commutes:

This defines the tensor product on \mathcal{D} completely because F is trivial on the hom-space. One verify easily that * is a functor, and it is strictly associative by construction.
6. Prove that F and G are tensor functors. Conclude.

Solution. This is to be understood as "prove that F and G can be completed as tensor functors". The triple $\left(F, \operatorname{id}_{I}, \phi\right)$ is a tensor functor since the question 4 tells us that the required equalities (of the definition 2.4.6 of the script) hold (right and left unit constraint follow from the definition of $\phi(S, \emptyset)$ and $\phi(\emptyset), S)$). The triple (G, id, id) is as well a tensor functor (the id's should be widely understood). Finally $F G=\mathrm{id}_{\mathcal{C}}$, and the natural isomorphism $\theta: G F \rightarrow \mathrm{id}_{\mathcal{D}}$ given by $\theta(S)=\mathrm{id}_{F(S)}$ is a tensor natural transformation so that \mathcal{C} and \mathcal{D} are tensor equivalent.

[^0]: ${ }^{1}$ This a module generated by one element

[^1]: ${ }^{2}$ This was indeed completly obvious.
 ${ }^{3}$ Just a sum, not a direct sum

