UH

iti PD Dr. Ralf Holtkamp
L 2¥ Universitdit Hamburg Prof. Dr. C. Schweigert
DER FORSCHUNG | DER LEHRE | DER BILDUNG Hopf algebras
Algebra and Number Theory Winter term 2014/2015

Mathematics department

Sheet 7

Problem 1 (Adjoint functors). 1. If A is an algebra, we denote by A* the set of invertible element in A.
Show that this fits in a functor setting, and find a left adjoint functor of *.

Solution. The set A* is a naturally endowed with a group structure thank to the multiplication in A, and if
f + A — B is a morphism of unital algebra then f(A*) C B>, furthermore the restriction f* of f to A* is
a morphism of group.

It is straightforward to check thatid™ = id 4« and that (f o g)* = f* o g*, this proves that * is a functor.
Let us prove that the functor F' :: Grp — K — Alg which associate to a group G its group algebra G is a left
adjoint to ¢ : Let G be a group and A be an algebra.

We define ¢, 4 : Homp g (KG, A) — Homg,, (G, A*) by restriction (note that for any x € G, the image of
x in A by a morphism of unital algebra is inversible) and its inverse by K-linearization. Given a morphism of
groups f : G1 — G2 and a moprhism of algebra g : A1 — A, the following diagram obviously commutes:

[P

Homa (KG2, A1) c2M Homgp (G2, AT)
DG, A,

Homag(KG1, Ay) Homg,,(G1, A7)

$ay,
HomA|g(KG1,A1) Gu2

2. If g is a Lie algebra, we denote by U (g) the enveloping algebra of g. Show that this fits in a functor settings,
and find a right adjoint functor of U (e).

Solution. U (e) is obviously a functor. Let us denote by L : Alg — Lie the functor which associate to an
algebra A the Lie algebra L(A) which as a vector space is equal to A and whose Lie bracket is the commutator

of A.

We define ¢ 4 : Homag(U(g), A) — Homyie(g, L(A)) by restriction (note that if a morphism of algebra
respect the commutators) and its inverse by the universal property of the enveloping algebra. The diagrams
obviously commutes. O

3. If C is a coalgerba, we denote by G(C) the set of group like element of C. Show that this fits in a functor
settings, and find a left adjoint functor of G(e).



Solution. Note that of f is a morphism of coalgebras, it sends a group-like element on a group-like element
(why ?). So that G(e) is a functor from CoAlg to Set. If X is a set one can construct C(X) the (K-) coalgebra
which as a vector space is the vector space generated by X, and whose coproduct is given by the fact that
the element of X are group-like. We claim that C(e) is a left adjoint functor of G(e). We define ¢x ¢ :
Homcopig(C(X),C) — Homeet (X, G(C)) by restriction and its inverse by K-linearization (note that this
gives indeed a morphism of coalgebra). The diagrams obviously commutes. O

4. If R is a commutative ring without zero divisors, we denote by F(R) the field of fractions of R. Show that
this fits in a functor settings, and find a right adjoint functors of §(e).

Solution. Givenamap f : Ry — Ry, there is one and only one way to extend it toa map F(f) : F(R1) — R,,
this describe completely the functor §(e). Let us denote by R, the forgetful functor from the category Field to
the category C of commutative ring without zero divisors, I claim that it is a right adjoint to F:

We define ¢4 4 : Homprield(§(R), k) — Home (R, R(k)) by restriction and its inverse thanks to the fact that
there is a canonical isomorphism §(k) ~ k. The diagrams obviously commutes. O

Problem 2 (The Hopf algebra U (sl3)). We consider the Lie algebra sl; = sl3(C). As a vector space, it consists
of all 2 X 2 matrices with complex coefficient and which have trace equal to 0. The Lie bracket is given by the
commutator of the classical matrix product. Choose a base of s[s:

1. Prove that sl is isomorphic to the Lie algebra generated by E, F' and H subjected to the relations:

[H,E| = —[E,H|=2E, [H,F]=—[F,H]=-2F and |[E,F|=—[F,E]=H.

Solution. Let us denote by g, the Lie algebra generated by E, F' and H subjected to the given relations. It has
dimension at most 3, since it is spanned by E, F' and H. Note that sly is 3 dimensional as a C-vector space.

Now if we set:
1 0 0 1 0 0
(b0 B(0 ) p(0),

we see (easy computation) that the relations given are satisfied. (To be completely rigorous, one would have to
consider a linear map from sly to g and to say that as the relation are satisfied, this is a Lie algebra morphism).

O

2. Recall the definition of U(slz), compute A, € and S on the generators.

Solution. We have
Usk) = | Pt / (z@y-—yoz—[z,yllz,y € sly).
n>0
The comultiplication A is determined by the fact that element from g are primitive:

AE)=1®E+E®1l, AF)=1@F+F®1 and AH)=1H+H®1.



Ifr = x129- - x, isa monomial in E, F and H (I mean here that x; € {E, F, H} and for simplicity I didn’t
write the ®), then we have:

n—1
=1

The counity € is determined by €(1) = 1 and e(sl,) = {0}. The antipode is determined by:
S(E)=—E, S(F)=-F and S(H)=-H

And by the fact that it is an antimorphism. If x = x122 - - - ©,, is a monomial in E, F' and H (same notations
and abuse of notations as before), we have:

S(xy...2n) = (—1)"zp - 21.

3. Prove that sl has no non-trivial ideal!, that is: there is no non-trivial subspace i such that [i,slp] C i
(Consider an element X in such a subspace and compute [H, [H, X ||, then discuss according to the different
possible cases).

Solution. Let X be a non-trivial element of element of i. We can write X = oF + bF + cH. [[X, H],H] =
[-2aFE + 2bF, H] = 4aFE + 4bF. If ¢ # 0, this implies that H, is ini, and therefor E and F. If c = 0, then
a or b must be different from 0. Suppose a # 0. then we have [X, F| = aH, so that H is in i and we conclude
as before. O

4. A representation of sly is irreducible if it contains no non-trivial sub-representation of g. Let V' be a finite
dimensional irreducible representation of sly. Let v be an element of V' \ {0} such that there exists a
complex number )\ such that H - v = Av (we say that v is an weight vector). Prove that if F - v # 0, it is as
well a weight vector.

Solution. We want to compute H - (E - v). The only information we have is on H - v. So that it is reasonable
to consider the following equality:

[HE|-v=H-(FE-v)—E-(H-v).
On the other hand [H, E] = 2F, so that we have:
H-(E-v)=E-(\)+2EMv,

sothat H - (E-v) = (A+2)(F - v). Hence E - v is a weight vector. O

5. Prove that there exists an highest weight vector in V, that is a weight vector such that £/ - v = 0.

Solution. First, observe that as we work over C, we can always find a weight vector in V. The vector space
V' is supposed to be finite dimensional, this means implies that endomorphism of V' induced by the action of
H has finitely many eigen-values. If there were no highest weight vector, the set of eigen-value would not be
bounded. This is absurd. O

This property is the simplicity of slo.



6. Let v be an highest weight vector in V. Prove that V =< F™ - v|n € N >.

Solution. V' is suppose to be irreducible, this implies that if W =< F™ - v|n € N > is stable by the action
of sly then it is equal to V. W is clearly stable by F'. Let us inspect the action of E' and H. We will show by
inductiononn that E - F"v and H - F*v isin W. Ifn = 0, Hv = Av and Ev = 0, hence it is clear. Let us
suppose this holds forn.

E-F"Wy=[BE,FIF"v — FEF" = HF"v — FEF"w €V,
H-F""vy=[H F|F"v— FHF" = -2F""'v — FEF™v € V.

7. Describe all the finite dimensional representation of g.

Solution. Let'V be an irreducible representation of sly. By a slight abuse of notation, we identify H and the endo-
morphism of Vit induces. Just like for E, if x is a weight vector of weight \, Fx is a weight vector of weight A\ — 2.
So that for some N, FNv = 0. The description of V in the previous question show that V is spanned as a vector
space by the eigen-vectors of H and that all the eigen-values of H are simple. Let v be a highest weight vector of V.
Let us denote by X\ the weight of v and for every k € N, v, = %Fkv. One easyl show by induction on k that the
following three relation holds:

Hu, = (A—2k) and Evi=(A—k+1)vg_1.
Let now n be the first integer for which F""1v = 0, n is the dimension of V. For every k, we have

k
E*FFo = E¥klo, = KU [(A =i+ D)o
i=1
fork = n + 1 the product in the last formula should be equal to 0. This shows that A is a non-negative integer smaller
or equal to n. We claim that A\ = n, If it would be smaller, starting from the vector space < E*v, |k € N >, would

be a strict sub-module of V. This is not allowed. This fixes completely the sly-module structures on V. One verifies
easily, that for every n we can construct an irreducible sly-module of dimension n + 1. O

Problem 3. Let H be a Hopf algebra of dimension n (< 00).

1. Suppose first that as a K-algebra, H is isomorphic to K x K X - - - x K, prove that G(H*) has order n.

Solution. Thanks to the proposition 2.6.11 of the script, the order of G(H™) is at most equal to the dimension
of H*, hence it is smaller than n. If we find n different group like element in H*, we are done. What is a
group-like element of H* ? It is a linear form f on H such that for any (h1, he) € H?, we have:

A(f)(h1 @ h2) = f(h1) - f(h2).

But by definition, we have A(f)(h1 ® ha) = f(h1)f(ha). This means that [ is group-like if and only if it
is a non-trivial morphism of algebra. On the other hand, the projection m; : K x --- x K — K on the ith
coordinate is a morphism of algebras. Hence we found n different group-like element in H*. O



2. Deduce that H is isomorphic as a Hopf algebra to (KG)* for some group G (the dual of the group algebra
of G).

Solution. From the previous question we can deduce that H* ~ KG as an Hopf algebra with G = G(H™).
On the other hand, we have: H ~ (H*)* as an algebra and as a coalgebra and hence as a Hopf algebra. Hence
we have H ~ (KG)*. O

3. Suppose now that H is isomorphic as a Hopf algebra to (KG)*, for some finite group G, prove that H is
isomorphicto K x K x --- x K.

Solution. Let G be a finite group, we want to show (KG)* is isomoprhic as an algebra to K x - - - x K. Note
that the only structure which matters on KG is the coalgebra-structure. The elements of G form a base of KG,
we consider the dual base (¢*)4ec of (KG)*. And we claim that

@ (KG)* — K#¢
dec agg* —  (ag)gec
is an isomorphism of algebra. As a linear map, it is clearly injective and surjective, so that we just have to

show that it sends 1 to 1 and that it respects the multiplication. The unit of (KG)* ise = 3 - g", indeed
for every (h,z) in G* and every, we have:

(e h") (@) = e(x)-h*(x) = Y g*(@)h"(z) = 2" (2)h" (x) = h* ().

geG

As, G spans KG, this proves that e - h* = h*, and as (h*)pcc spans (KG)*, this proves that e is the 1 of
(KG)*. Furthermore, we clearly have ¢(e) = lg#c. Let (g, h, ) be an element of G*, we have:

1 ifg=h=x,
0 else

(g h) (@) = g"(2) - h* () = {

This means that g* - h* = 0 if g # h and g* - g* = g*. This is now clear that ¢ respects the multiplication. [

Problem 4. We define O(M,,(K)) as the commutative algebra K[X; ; | 1 < 4,5 < n] of polynomials in n?
indeterminates {X; ; }1<; j<n together with the maps A and e defined by

A<le) = ZXi’k ® Xk:,j and G(Xi)j) = 627]
k=1

1. Show that O(M,,(K)) is a bialgebra.

Solution. By the universal property of the polynomial ring in n? indeterminates A and ¢ are algebra homo-
morphism, thus one has to check only coassociativity and counitality. And for this it suffice to check on the
indeterminates, since they generate O(M,,(K)) as an algebra: For every 1 < i,j < n we have

(A ®id)A(X;,;)

Z AXig) @ Xy, = Z Xip @ Xpp @ Xy j
k=1 k=1

and

(d®A)AX ;) =D Xix®AXpj) = > X ® Xie ® Xoj
k=1 k,0=1



These sums are obviously equal. For counitality consider

n

(€@IDAX ;) =D e(Xin) @ Xpj = D ik Xpj = X

k=1 k=1
and

(1d®6)A( ZXZK‘®€X]€J Zék] zk— i,7
k=1

. Consider the (n x n)-matrix X = (X, ;)1<; j<n with entries in K[X; ;]. Show that g := detX €
O(M,(K)) is group-like, i.e. A(g) =g ® g.

Solution. Consider the polynomial algebras K[X; ;] and K[Y; ;] in n? indeterminates. The tensor product
K[X; ;] ® K[Y; ;] is canonically isomorphic to the polynomial algebra K[X; ;,Y; ;] in 2n? indeterminates
(the algebra isomorphism is given by : X; ; @ 1 = X; ;,1®@ Y, j — Yj ).

Consider the matrices X = (X; ;) and Y = (Y; ;) as matrices with entries in the quotient field F' of
K[X; ;,Y: ;). i.e. the field of rational functions. Now we know from linear algebra that the identity

det X - detY = det(X -Y) (1)

holds in theﬁeld F. But since the entries of X,Y and X - Y are in K[X; ;,Y; ;] equation (??) also holds in
the ring K[X; ;,Y; ;1.
Now consider A as a map from K[X; ;] to K[X; ;] @ K[Y; ;], i.e. A(X; ;) = > p; Xik @ Yy, . Observe

n

(PA)(Xij) =Y W(Xik ®Vij) = (X -Y)i,

k=1
so we get with the help of Leibniz’ formula

(¢A)(det X) = Z Sgn( )("/’A)(Xl Lo (1) ) (wa n,o( n))

gESy

Z Sgn(0> (X ' Y)l,a(l) e (X : Y)n,a(n)
geSy

=det(X-Y)=det X -detY

By application of )~ we get the equality A(det X) = det X @ det Y which gives us the desired equality if
we interpret A as map from O (M, (K)) to O(M,(K)) ® O(M,(K)). O

. Show that O(M,,(K)) is not a Hopf algebra. (Hint: Is det X multiplicatively invertible?)

Solution. det X is a polynomial of degree n > 0, thus not invertible. But if there was an antipode S for the
bialgebra O(M,,(K)) then S(det X) would be an inverse of det X. O

. Let I be the two-sided ideal of O(M>(K)) generated by det X —1. Show that O(M>(K))/I is a Hopf algebra

where the antipode is given by S(X; ; + I) = (X '); ; + I. Here X ! is the matrix ( )g?Z _)?(1’2).
—X2,1 1,1

How can one generalize this for larger n?



Solution. First we show that I is a coideal: Since g := det X and 1 are group-like, we have

Alg—1)=g0g-101=9gRg—g01+ge1-101
=g®@-D+@g-1)®l

€O(M,(K)®I €I®O(My(K)

and
elg—1)=¢€(g)—e(l)=1-1=0.
Hence I is a coideal and so A and e descend on the quotient O (M, (K))/I.
Forn > 1 we define (X*); j := (—1)"7 det X where X ; is the matrix we obtain by wiping out the j-th
row and i-th column of X . Furthermore we define S(X; ;) := (X*); ;.
Cramer’s rule tells us

XXt =detX I, = X!X (2)

where I, s the (n X n)-unit matrix. We now show that S descends to a well-defined map on the quotient if we
extend it to the whole algebra:
With Leibniz’ rule one easily sees S(det X ) = det X*. Now observe

det X - det X* = det(X - X¥) = det(det X - I,,) = (det X)"

Since K[X; j] has no zero divisors we conclude det X* = (det X)"~1, so

|
N

n

S(det X —1) = (det X)" 1 —1 = (det X —1)- > (det X)* e I,

i
o

so S gives a map on the quotient.

For the antipode property we compute p := (ne)(X; ;) = 0;,; - 1. The polynomial ¢ := p(S ® id)A(X; ;)
is the (i, 7)-th entry of X* - X which is 6; ; - det X. Modulo I the polynomials p and q are equal. The other
equality of the antipode property follows in the same way. O



