Mathematics department

Sheet 7

Problem 1 (Adjoint functors). 1. If A is an algebra, we denote by A^{\times}the set of invertible element in A. Show that this fits in a functor setting, and find a left adjoint functor of $\bullet \times$.

Solution. The set A^{\times}is a naturally endowed with a group structure thank to the multiplication in A, and if $f: A \rightarrow B$ is a morphism of unital algebra then $f\left(A^{\times}\right) \subseteq B^{\times}$, furthermore the restriction f^{\times}of f to A^{\times}is a morphism of group.
It is straightforward to check that $\mathrm{id}^{\times}=\operatorname{id}_{A^{\times}}$and that $(f \circ g)^{\times}=f^{\times} \circ g^{\times}$, this proves that \bullet^{\times}is a functor. Let us prove that the functor $F:: \operatorname{Grp} \rightarrow \mathbb{K}$ - Alg which associate to a group G its group algebra G is a left adjoint to $\bullet \times$: Let G be a group and A be an algebra.
We define $\phi_{G, A}: \operatorname{Hom}_{\mathrm{Alg}}(\mathbb{K} G, A) \rightarrow \operatorname{Hom}_{\mathrm{Grp}}\left(G, A^{\times}\right)$by restriction (note that for any $x \in G$, the image of x in A by a morphism of unital algebra is inversible) and its inverse by \mathbb{K}-linearization. Given a morphism of groups $f: G_{1} \rightarrow G_{2}$ and a moprhism of algebra $g: A_{1} \rightarrow A_{2}$, the following diagram obviously commutes:

2. If \mathfrak{g} is a Lie algebra, we denote by $U(\mathfrak{g})$ the enveloping algebra of \mathfrak{g}. Show that this fits in a functor settings, and find a right adjoint functor of $U(\bullet)$.

Solution. $U(\bullet)$ is obviously a functor. Let us denote by $L:$ Alg \rightarrow Lie the functor which associate to an algebra A the Lie algebra $L(A)$ which as a vector space is equal to A and whose Lie bracket is the commutator of A.
We define $\phi_{\mathfrak{g}}, A: \operatorname{Hom}_{\mathrm{Alg}}(U(\mathfrak{g}), A) \rightarrow \operatorname{Hom}_{\mathrm{Lie}}(\mathfrak{g}, L(A))$ by restriction (note that if a morphism of algebra respect the commutators) and its inverse by the universal property of the enveloping algebra. The diagrams obviously commutes.
3. If C is a coalgerba, we denote by $G(C)$ the set of group like element of C. Show that this fits in a functor settings, and find a left adjoint functor of $G(\bullet)$.

Solution. Note that of f is a morphism of coalgebras, it sends a group-like element on a group-like element (why ?). So that $G(\bullet)$ is a functor from CoAlg to Set. If X is a set one can construct $C(X)$ the $(\mathbb{K}$-) coalgebra which as a vector space is the vector space generated by X, and whose coproduct is given by the fact that the element of X are group-like. We claim that $C(\bullet)$ is a left adjoint functor of $G(\bullet)$. We define $\phi_{X, C}$: $\operatorname{Hom}_{\text {CoAlg }}(C(X), C) \rightarrow \operatorname{Hom}_{\text {set }}(X, G(C))$ by restriction and its inverse by \mathbb{K}-linearization (note that this gives indeed a morphism of coalgebra). The diagrams obviously commutes.
4. If R is a commutative ring without zero divisors, we denote by $\mathfrak{F}(R)$ the field of fractions of R. Show that this fits in a functor settings, and find a right adjoint functors of $\mathfrak{F}(\bullet)$.

Solution. Given a map $f: R_{1} \rightarrow R_{2}$, there is one and only one way to extend it to a map $\mathfrak{F}(f): \mathfrak{F}\left(R_{1}\right) \rightarrow \mathfrak{R}_{2}$, this describe completely the functor $\mathfrak{F}(\bullet)$. Let us denote by \mathfrak{R}, the forgetful functor from the category Field to the category \mathcal{C} of commutative ring without zero divisors, I claim that it is a right adjoint to \mathcal{F} :
We define $\phi_{\mathfrak{g}, A}: \operatorname{Hom}_{\text {Field }}(\mathfrak{F}(R), k) \rightarrow \operatorname{Hom}_{\mathcal{C}}(R, \mathfrak{R}(k))$ by restriction and its inverse thanks to the fact that there is a canonical isomorphism $\mathfrak{F}(k) \simeq k$. The diagrams obviously commutes.

Problem 2 (The Hopf algebra $U\left(\mathfrak{s l}_{2}\right)$). We consider the Lie algebra $\mathfrak{s l}_{2}=\mathfrak{s l}_{2}(\mathbb{C})$. As a vector space, it consists of all 2×2 matrices with complex coefficient and which have trace equal to 0 . The Lie bracket is given by the commutator of the classical matrix product. Choose a base of $\mathfrak{s l}_{2}$:

1. Prove that $\mathfrak{s l}_{2}$ is isomorphic to the Lie algebra generated by E, F and H subjected to the relations:

$$
[H, E]=-[E, H]=2 E, \quad[H, F]=-[F, H]=-2 F \quad \text { and } \quad[E, F]=-[F, E]=H
$$

Solution. Let us denote by \mathfrak{g}, the Lie algebra generated by E, F and H subjected to the given relations. It has dimension at most 3 , since it is spanned by E, F and H. Note that $\mathfrak{s l}_{2}$ is 3 dimensional as a \mathbb{C}-vector space. Now if we set:

$$
H=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad E=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad \text { and } \quad F=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
$$

we see (easy computation) that the relations given are satisfied. (To be completely rigorous, one would have to consider a linear map from $\mathfrak{s l}_{2}$ to \mathfrak{g} and to say that as the relation are satisfied, this is a Lie algebra morphism).
2. Recall the definition of $U\left(\mathfrak{s l}_{2}\right)$, compute Δ, ϵ and S on the generators.

Solution. We have

$$
U\left(\mathfrak{s l}_{2}\right)=\left(\bigoplus_{n \geq 0} \mathfrak{s l}_{2}^{\otimes n}\right) /\left\langle x \otimes y-y \otimes x-[x, y] \mid x, y \in \mathfrak{s l}_{2}\right\rangle .
$$

The comultiplication Δ is determined by the fact that element from \mathfrak{g} are primitive:

$$
\Delta(E)=1 \otimes E+E \otimes 1, \quad \Delta(F)=1 \otimes F+F \otimes 1 \quad \text { and } \quad \Delta(H)=1 \otimes H+H \otimes 1 .
$$

If $x=x_{1} x_{2} \cdots x_{n}$ is a monomial in E, F and H (I mean here that $x_{i} \in\{E, F, H\}$ and for simplicity I didn't write the \otimes), then we have:

$$
\Delta(x)=1 \otimes x+\sum_{i=1}^{n-1} x_{1} \cdots x_{i} \otimes x_{i+1} \cdots x_{n}+x \otimes n
$$

The counity ϵ is determined by $\epsilon(1)=1$ and $\epsilon\left(\mathfrak{s l}_{2}\right)=\{0\}$. The antipode is determined by:

$$
S(E)=-E, \quad S(F)=-F \quad \text { and } \quad S(H)=-H
$$

And by the fact that it is an antimorphism. If $x=x_{1} x_{2} \cdots x_{n}$ is a monomial in E, F and H (same notations and abuse of notations as before), we have:

$$
S\left(x_{1} \ldots x_{n}\right)=(-1)^{n} x_{n} \cdots x_{1} .
$$

3. Prove that $\mathfrak{s l}_{2}$ has no non-trivial ideal ${ }^{1}$, that is: there is no non-trivial subspace \mathfrak{i} such that $\left[\mathfrak{i}, \mathfrak{s l}_{2}\right] \subseteq \mathfrak{i}$. (Consider an element X in such a subspace and compute $[H,[H, X]]$, then discuss according to the different possible cases).

Solution. Let X be a non-trivial element of element of \mathfrak{i}. We can write $X=a E+b F+c H .[[X, H], H]=$ $[-2 a E+2 b F, H]=4 a E+4 b F$. If $c \neq 0$, this implies that H, is in \mathfrak{i}, and therefor E and F. If $c=0$, then a or b must be different from 0 . Suppose $a \neq 0$. then we have $[X, F]=a H$, so that H is in \mathfrak{i} and we conclude as before.
4. A representation of $\mathfrak{s l}_{2}$ is irreducible if it contains no non-trivial sub-representation of \mathfrak{g}. Let V be a finite dimensional irreducible representation of $\mathfrak{S l}_{2}$. Let v be an element of $V \backslash\{0\}$ such that there exists a complex number λ such that $H \cdot v=\lambda v$ (we say that v is an weight vector). Prove that if $E \cdot v \neq 0$, it is as well a weight vector.

Solution. We want to compute $H \cdot(E \cdot v)$. The only information we have is on $H \cdot v$. So that it is reasonable to consider the following equality:

$$
[H, E] \cdot v=H \cdot(E \cdot v)-E \cdot(H \cdot v)
$$

On the other hand $[H, E]=2 E$, so that we have:

$$
H \cdot(E \cdot v)=E \cdot(\lambda v)+2 E \lambda v,
$$

so that $H \cdot(E \cdot v)=(\lambda+2)(E \cdot v)$. Hence $E \cdot v$ is a weight vector.
5. Prove that there exists an highest weight vector in V, that is a weight vector such that $E \cdot v=0$.

Solution. First, observe that as we work over \mathbb{C}, we can always find a weight vector in V. The vector space V is supposed to be finite dimensional, this means implies that endomorphism of V induced by the action of H has finitely many eigen-values. If there were no highest weight vector, the set of eigen-value would not be bounded. This is absurd.

[^0]6. Let v be an highest weight vector in V. Prove that $V=<F^{n} \cdot v \mid n \in \mathbb{N}>$.

Solution. V is suppose to be irreducible, this implies that if $W=<F^{n} \cdot v \mid n \in \mathbb{N}>$ is stable by the action of $\mathfrak{s l}_{2}$ then it is equal to V. W is clearly stable by F. Let us inspect the action of E and H. We will show by induction on n that $E \cdot F^{n} v$ and $H \cdot F^{n} v$ is in W. If $n=0, H v=\lambda v$ and $E v=0$, hence it is clear. Let us suppose this holds for n.

$$
\begin{aligned}
& E \cdot F^{n+1} v=[E, F] F^{n} v-F E F^{n}=H F^{n} v-F E F^{n} v \in V \\
& H \cdot F^{n+1} v=[H, F] F^{n} v-F H F^{n}=-2 F^{n+1} v-F E F^{n} v \in V
\end{aligned}
$$

7. Describe all the finite dimensional representation of \mathfrak{g}.

Solution. Let V be an irreducible representation of $\mathfrak{s l}_{2}$. By a slight abuse of notation, we identify H and the endomorphism of V it induces. Just like for E, if x is a weight vector of weight $\lambda, F x$ is a weight vector of weight $\lambda-2$. So that for some $N, F^{N} v=0$. The description of V in the previous question show that V is spanned as a vector space by the eigen-vectors of H and that all the eigen-values of H are simple. Let v be a highest weight vector of V. Let us denote by λ the weight of v and for every $k \in \mathbb{N}, v_{k}=\frac{1}{k!} F^{k} v$. One easyl show by induction on k that the following three relation holds:

$$
H v_{k}=(\lambda-2 k) \quad \text { and } \quad E v_{k}=(\lambda-k+1) v_{k-1}
$$

Let now n be the first integer for which $F^{n+1} v=0, n$ is the dimension of V. For every k, we have

$$
E^{k} F^{k} v=E^{k} k!v_{k}=k!\prod_{i=1}^{k}(\lambda-i+1) v
$$

for $k=n+1$ the product in the last formula should be equal to 0 . This shows that λ is a non-negative integer smaller or equal to n. We claim that $\lambda=n$, If it would be smaller, starting from the vector space $<E^{k} v_{n} \mid k \in \mathbb{N}>$, would be a strict sub-module of V. This is not allowed. This fixes completely the $\mathfrak{s l}_{2}$-module structures on V. One verifies easily, that for every n we can construct an irreducible $\mathfrak{s l}_{2}$-module of dimension $n+1$.

Problem 3. Let H be a Hopf algebra of dimension $n(<\infty)$.

1. Suppose first that as a \mathbb{K}-algebra, H is isomorphic to $\mathbb{K} \times \mathbb{K} \times \cdots \times \mathbb{K}$, prove that $G\left(H^{*}\right)$ has order n.

Solution. Thanks to the proposition 2.6.11 of the script, the order of $G\left(H^{*}\right)$ is at most equal to the dimension of H^{*}, hence it is smaller than n. If we find n different group like element in H^{*}, we are done. What is a group-like element of H^{*} ? It is a linear form f on H such that for any $\left(h_{1}, h_{2}\right) \in H^{2}$, we have:

$$
\Delta(f)\left(h_{1} \otimes h_{2}\right)=f\left(h_{1}\right) \cdot f\left(h_{2}\right)
$$

But by definition, we have $\Delta(f)\left(h_{1} \otimes h_{2}\right)=f\left(h_{1}\right) f\left(h_{2}\right)$. This means that f is group-like if and only if it is a non-trivial morphism of algebra. On the other hand, the projection $\pi_{i}: \mathbb{K} \times \cdots \times \mathbb{K} \rightarrow \mathbb{K}$ on the i th coordinate is a morphism of algebras. Hence we found n different group-like element in H^{*}.
2. Deduce that H is isomorphic as a Hopf algebra to $(\mathbb{K} G)^{*}$ for some group G (the dual of the group algebra of G).

Solution. From the previous question we can deduce that $H^{*} \simeq \mathbb{K} G$ as an Hopf algebra with $G=G\left(H^{*}\right)$. On the other hand, we have: $H \simeq\left(H^{*}\right)^{*}$ as an algebra and as a coalgebra and hence as a Hopf algebra. Hence we have $H \simeq(\mathbb{K} G)^{*}$.
3. Suppose now that H is isomorphic as a Hopf algebra to $(\mathbb{K} G)^{*}$, for some finite group G, prove that H is isomorphic to $\mathbb{K} \times \mathbb{K} \times \cdots \times \mathbb{K}$.

Solution. Let G be a finite group, we want to show $(\mathbb{K} G)^{*}$ is isomoprhic as an algebra to $\mathbb{K} \times \cdots \times \mathbb{K}$. Note that the only structure which matters on $\mathbb{K} G$ is the coalgebra-structure. The elements of G form a base of $\mathbb{K} G$, we consider the dual base $\left(g^{*}\right)_{g \in G}$ of $(\mathbb{K} G)^{*}$. And we claim that

$$
\begin{array}{llll}
\phi: & (\mathbb{K} G)^{*} & \rightarrow & \mathbb{K}^{\# G} \\
\sum_{g \in G} a_{g} g^{*} & \mapsto & \left(a_{g}\right)_{g \in G}
\end{array}
$$

is an isomorphism of algebra. As a linear map, it is clearly injective and surjective, so that we just have to show that it sends 1 to 1 and that it respects the multiplication. The unit of $(\mathbb{K} G)^{*}$ is $e=\sum_{g \in G} g^{*}$, indeed for every (h, x) in G^{2} and every, we have:

$$
\left(e \cdot h^{*}\right)(x)=e(x) \cdot h^{*}(x)=\sum_{g \in G} g^{*}(x) h^{*}(x)=x^{*}(x) h^{*}(x)=h^{*}(x) .
$$

As, G spans $\mathbb{K} G$, this proves that $e \cdot h^{*}=h^{*}$, and as $\left(h^{*}\right)_{h \in G}$ spans $(\mathbb{K} G)^{*}$, this proves that e is the 1 of $(\mathbb{K} G)^{*}$. Furthermore, we clearly have $\phi(e)=1_{\mathbb{K} \# G}$. Let (g, h, x) be an element of G^{3}, we have:

$$
\left(g^{*} \cdot h^{*}\right)(x)=g^{*}(x) \cdot h^{*}(x)= \begin{cases}1 & \text { if } g=h=x, \\ 0 & \text { else. }\end{cases}
$$

This means that $g^{*} \cdot h^{*}=0$ if $g \neq h$ and $g^{*} \cdot g^{*}=g^{*}$. This is now clear that ϕ respects the multiplication.

Problem 4. We define $\mathcal{O}\left(M_{n}(\mathbb{K})\right)$ as the commutative algebra $\mathbb{K}\left[X_{i, j} \mid 1 \leq i, j \leq n\right]$ of polynomials in n^{2} indeterminates $\left\{X_{i, j}\right\}_{1 \leq i, j \leq n}$ together with the maps Δ and ϵ defined by

$$
\Delta\left(X_{i, j}\right):=\sum_{k=1}^{n} X_{i, k} \otimes X_{k, j} \quad \text { and } \quad \epsilon\left(X_{i, j}\right):=\delta_{i, j} .
$$

1. Show that $\mathcal{O}\left(M_{n}(\mathbb{K})\right)$ is a bialgebra.

Solution. By the universal property of the polynomial ring in n^{2} indeterminates Δ and ϵ are algebra homomorphism, thus one has to check only coassociativity and counitality. And for this it suffice to check on the indeterminates, since they generate $\mathcal{O}\left(M_{n}(\mathbb{K})\right)$ as an algebra: For every $1 \leq i, j \leq n$ we have

$$
(\Delta \otimes \mathrm{id}) \Delta\left(X_{i, j}\right)=\sum_{k=1}^{n} \Delta\left(X_{i, k}\right) \otimes X_{k, j}=\sum_{k, \ell=1}^{n} X_{i, \ell} \otimes X_{\ell, k} \otimes X_{k, j}
$$

and

$$
(\mathrm{id} \otimes \Delta) \Delta\left(X_{i, j}\right)=\sum_{k=1}^{n} X_{i, k} \otimes \Delta\left(X_{k, j}\right)=\sum_{k, \ell=1}^{n} X_{i, k} \otimes X_{k, \ell} \otimes X_{\ell, j}
$$

These sums are obviously equal. For counitality consider

$$
(\epsilon \otimes \mathrm{id}) \Delta\left(X_{i, j}\right)=\sum_{k=1}^{n} \epsilon\left(X_{i, k}\right) \otimes X_{k, j}=\sum_{k=1}^{n} \delta_{i, k} \cdot X_{k, j}=X_{i, j}
$$

and

$$
(\mathrm{id} \otimes \epsilon) \Delta\left(X_{i, j}\right)=\sum_{k=1}^{n} X_{i, k} \otimes \epsilon\left(X_{k, j}\right)=\sum_{k=1}^{n} \delta_{k, j} \cdot X_{i, k}=X_{i, j}
$$

2. Consider the $(n \times n)$-matrix $X=\left(X_{i, j}\right)_{1 \leq i, j \leq n}$ with entries in $\mathbb{K}\left[X_{i, j}\right]$. Show that $g:=\operatorname{det} X \in$ $\mathcal{O}\left(M_{n}(\mathbb{K})\right)$ is group-like, i.e. $\Delta(g)=g \otimes g$.

Solution. Consider the polynomial algebras $\mathbb{K}\left[X_{i, j}\right]$ and $\mathbb{K}\left[Y_{i, j}\right]$ in n^{2} indeterminates. The tensor product $\mathbb{K}\left[X_{i, j}\right] \otimes \mathbb{K}\left[Y_{i, j}\right]$ is canonically isomorphic to the polynomial algebra $\mathbb{K}\left[X_{i, j}, Y_{i, j}\right]$ in $2 n^{2}$ indeterminates (the algebra isomorphism is given by $\psi: X_{i, j} \otimes 1 \mapsto X_{i, j}, 1 \otimes Y_{i, j} \mapsto Y_{i, j}$).
Consider the matrices $X=\left(X_{i, j}\right)$ and $Y=\left(Y_{i, j}\right)$ as matrices with entries in the quotient field F of $\mathbb{K}\left[X_{i, j}, Y_{i, j}\right]$, i.e. the field of rational functions. Now we know from linear algebra that the identity

$$
\begin{equation*}
\operatorname{det} X \cdot \operatorname{det} Y=\operatorname{det}(X \cdot Y) \tag{1}
\end{equation*}
$$

holds in the field F. But since the entries of X, Y and $X \cdot Y$ are in $\mathbb{K}\left[X_{i, j}, Y_{i, j}\right]$ equation (??) also holds in the ring $\mathbb{K}\left[X_{i, j}, Y_{i, j}\right]$.
Now consider Δ as a map from $\mathbb{K}\left[X_{i, j}\right]$ to $\mathbb{K}\left[X_{i, j}\right] \otimes \mathbb{K}\left[Y_{i, j}\right]$, i.e. $\Delta\left(X_{i, j}\right)=\sum_{k=1}^{n} X_{i, k} \otimes Y_{k, j}$. Observe

$$
(\psi \Delta)\left(X_{i, j}\right)=\sum_{k=1}^{n} \psi\left(X_{i, k} \otimes Y_{k, j}\right)=(X \cdot Y)_{i, j}
$$

so we get with the help of Leibniz' formula

$$
\begin{aligned}
(\psi \Delta)(\operatorname{det} X) & =\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma)(\psi \Delta)\left(X_{1, \sigma(1)}\right) \cdots(\psi \Delta)\left(X_{n, \sigma(n)}\right) \\
& =\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma)(X \cdot Y)_{1, \sigma(1)} \cdots(X \cdot Y)_{n, \sigma(n)} \\
& =\operatorname{det}(X \cdot Y)=\operatorname{det} X \cdot \operatorname{det} Y
\end{aligned}
$$

By application of ψ^{-1} we get the equality $\Delta(\operatorname{det} X)=\operatorname{det} X \otimes \operatorname{det} Y$ which gives us the desired equality if we interpret Δ as map from $\mathcal{O}\left(M_{n}(\mathbb{K})\right)$ to $\mathcal{O}\left(M_{n}(\mathbb{K})\right) \otimes \mathcal{O}\left(M_{n}(\mathbb{K})\right)$.
3. Show that $\mathcal{O}\left(M_{n}(\mathbb{K})\right)$ is not a Hopf algebra. (Hint: Is det X multiplicatively invertible?)

Solution. $\operatorname{det} X$ is a polynomial of degree $n>0$, thus not invertible. But if there was an antipode S for the bialgebra $\mathcal{O}\left(M_{n}(\mathbb{K})\right)$ then $S(\operatorname{det} X)$ would be an inverse of $\operatorname{det} X$.
4. Let I be the two-sided ideal of $\mathcal{O}\left(M_{2}(\mathbb{K})\right)$ generated by $\operatorname{det} X-1$. Show that $\mathcal{O}\left(M_{2}(\mathbb{K})\right) / I$ is a Hopf algebra where the antipode is given by $S\left(X_{i, j}+I\right)=\left(X^{-1}\right)_{i, j}+I$. Here X^{-1} is the matrix $\left(\begin{array}{cc}X_{2,2} & -X_{1,2} \\ -X_{2,1} & X_{1,1}\end{array}\right)$. How can one generalize this for larger n ?

Solution. First we show that I is a coideal: Since $g:=\operatorname{det} X$ and 1 are group-like, we have

$$
\begin{aligned}
\Delta(g-1) & =g \otimes g-1 \otimes 1=g \otimes g-g \otimes 1+g \otimes 1-1 \otimes 1 \\
& =\underbrace{g \otimes(g-1)}_{\in \mathcal{O}\left(M_{n}(\mathbb{K}) \otimes I\right.}+\underbrace{(g-1) \otimes 1}_{\in I \otimes \mathcal{O}\left(M_{n}(\mathbb{K})\right.}
\end{aligned}
$$

and

$$
\epsilon(g-1)=\epsilon(g)-\epsilon(1)=1-1=0 .
$$

Hence I is a coideal and so Δ and ϵ descend on the quotient $\mathcal{O}\left(M_{n}(\mathbb{K})\right) / I$.
For $n \geq 1$ we define $\left(X^{\sharp}\right)_{i, j}:=(-1)^{i+j} \operatorname{det} X_{j, i}^{\prime}$ where $X_{j, i}^{\prime}$ is the matrix we obtain by wiping out the j-th row and i-th column of X. Furthermore we define $S\left(X_{i, j}\right):=\left(X^{\sharp}\right)_{j, i}$.
Cramer's rule tells us

$$
\begin{equation*}
X X^{\sharp}=\operatorname{det} X \cdot I_{n}=X^{\sharp} X \tag{2}
\end{equation*}
$$

where I_{n} s the $(n \times n)$-unit matrix. We now show that S descends to a well-defined map on the quotient if we extend it to the whole algebra:
With Leibniz' rule one easily sees $S(\operatorname{det} X)=\operatorname{det} X^{\sharp}$. Now observe

$$
\operatorname{det} X \cdot \operatorname{det} X^{\sharp}=\operatorname{det}\left(X \cdot X^{\sharp}\right)=\operatorname{det}\left(\operatorname{det} X \cdot I_{n}\right)=(\operatorname{det} X)^{n}
$$

Since $\mathbb{K}\left[X_{i, j}\right]$ has no zero divisors we conclude $\operatorname{det} X^{\sharp}=(\operatorname{det} X)^{n-1}$, so

$$
S(\operatorname{det} X-1)=(\operatorname{det} X)^{n-1}-1=(\operatorname{det} X-1) \cdot \sum_{k=0}^{n-2}(\operatorname{det} X)^{k} \in I
$$

so S gives a map on the quotient.
For the antipode property we compute $p:=(\eta \epsilon)\left(X_{i, j}\right)=\delta_{i, j} \cdot 1$. The polynomial $q:=\mu(S \otimes \mathrm{id}) \Delta\left(X_{i, j}\right)$ is the (i, j)-th entry of $X^{\sharp} \cdot X$ which is $\delta_{i, j} \cdot \operatorname{det} X$. Modulo I the polynomials p and q are equal. The other equality of the antipode property follows in the same way.

[^0]: ${ }^{1}$ This property is the simplicity of $\mathfrak{s l}_{2}$.

