

PD Dr. Ralf Holtkamp Prof. Dr. C. Schweigert Hopf algebras Winter term 2014/2015

Sheet 8

Problem 1. Let H be a finite dimensional Hopf algebra. In this case we know that H^* is also a Hopf algebra. We consider the multiplication in H^* given by

$$\langle f \cdot g, h \rangle = \sum_{(h)} f(h_{(1)}) \cdot g(h_{(2)}) \quad f, g \in H^*, h \in H.$$

1. Show that the following defines a left resp. right action of the algebra H^* on the vector space H.

$$f \rightharpoonup h := \sum_{(h)} f(h_{(2)}) \cdot h_{(1)}, \qquad h \leftarrow f := \sum_{(h)} f(h_{(1)}) \cdot h_{(2)} \qquad f \in H^*, h \in H.$$

Show that H is an H^* -bimodule with the above actions, i.e. $(f \rightharpoonup h) \leftarrow g = f \rightharpoonup (h \leftarrow g)$ for all $f, g \in H^*$ and $h \in H$.

Solution. The unit of H^* is ϵ , so we have to prove for every $h \in H$ the equality

$$\epsilon \rightharpoonup h = h = h \leftharpoonup \epsilon$$

which holds by counitality of Δ . In the following let $h \in H$ and $f, g \in H^*$. We show $f \rightharpoonup (g \rightharpoonup h) = (f \cdot g) \rightharpoonup h$:

$$f \rightharpoonup (g \rightharpoonup h) = \sum_{(h)} g(h_{(2)}) \cdot (f \rightharpoonup h_{(1)})$$
$$= \sum_{(h)} g(h_{(3)}) \cdot f(h_{(2)}) \cdot h_{(1)}$$
$$= \sum_{(h)} (f \cdot g)(h_{(2)}) \cdot h_{(1)}$$
$$= (f \cdot g) \rightharpoonup h$$

Now we check $(h \leftarrow f) \leftarrow g = h \leftarrow (f \cdot g)$:

$$(h \leftarrow f) \leftarrow g = \sum_{(h)} f(h_{(1)})(h_{(2)} \leftarrow g)$$
$$= \sum_{(h)} f(h_{(1)}) \cdot g(h_{(2)}) \cdot h_{(3)}$$
$$= \sum_{(h)} (f \cdot g)(h_{(1)}) \cdot h_{(2)}$$
$$= h \leftarrow (f \cdot g)$$

At last we prove $(f \rightharpoonup h) \leftharpoonup g = f \rightharpoonup (h \leftharpoonup g)$:

$$(f \rightarrow h) \leftarrow g = \sum_{(h)} f(h_{(2)} \cdot (h_{(1)} \leftarrow g))$$
$$= \sum_{(h)} f(h_{(3)} \cdot g(h_{(1)})h_{(2)})$$
$$= \sum_{(h)} g(h_{(1)}) \cdot (f \rightarrow h_{(2)})$$
$$= f \rightarrow (h \leftarrow g)$$

	-	-	-	-	

2. Show that the following defines a left resp. right action of H on the vector space H^*

$$h \rightharpoonup f := (k \mapsto \langle f, kh \rangle), \qquad \qquad f \leftarrow h := (k \mapsto \langle f, hk \rangle) \qquad \qquad f \in H^*, h \in H.$$

Show that H^* is an H-bimodule with the above actions, i.e. $(h \rightharpoonup f) \leftarrow k = h \rightharpoonup (f \leftarrow k)$ for all $f \in H^*$ and $h, k \in H$.

Solution. We have to show $1 \rightharpoonup f = f = f \leftarrow 1$. This follows since for all $\ell \in H$ we have

$$(1 \rightharpoonup f)(\ell) = f(\ell \cdot 1) = f(\ell) = f(1 \cdot \ell) = (f \leftarrow 1)(\ell)$$

In the following assume $h, k, \ell \in H$ and $f \in H^*$. We prove $h \rightharpoonup (k \rightharpoonup f) = (hk) \rightharpoonup f$:

$$(h \rightharpoonup (k \rightharpoonup f))(\ell) = (k \rightharpoonup f)(\ell h) = f((\ell h)k) = f(\ell(hk)) = ((hk) \rightharpoonup f)(\ell).$$

Next we show $(f \leftarrow h) \leftarrow k = f \leftarrow (hk)$:

$$((f \leftharpoonup h) \leftharpoonup k)(\ell) = (f \leftharpoonup h)(k\ell) = f(h(k\ell)) = f((hk)\ell) = (f \leftharpoonup (hk))(\ell).$$

The last thing to show is $(h \rightharpoonup f) \leftarrow k = h \rightharpoonup (f \leftarrow k)$:

$$\begin{split} ((h \rightharpoonup f) \leftarrow k)(\ell) &= (h \rightharpoonup f)(k\ell) = f((k\ell)h) = f(k(\ell h)) \\ &= (f \leftarrow k)(\ell h) = (h \rightharpoonup (f \leftarrow k))(\ell). \end{split}$$

-	-	-	

3. Show that H^* becomes a left *H*-module with

$$h.f := \sum_{(h)} h_{(1)} \rightharpoonup f \leftarrow S(h_{(2)}) \qquad \qquad f \in H^*, h \in H$$

This action is called coadjoint (left) action of H on H^* .

Solution. We show a more general result: Let M be an H-bimodule, i.e. there are an H-left action (denoted by $h \triangleright m$) and an H-right action (denoted by $m \triangleleft k$) on M, such that the bimodule property holds:

$$(h \triangleright m) \triangleleft k = h \triangleright (m \triangleleft k)$$
 for all $h, k \in H$ and $m \in M$.

The vector space M has the structure of an H left-module by

$$h.m := \sum_{(h)} h_{(1)} \triangleright m \triangleleft S(h_{(2)})$$

Note that the bimodule property allows us to omit parentheses. The equality 1.m = m for $m \in M$ follows by $\Delta(1) = 1 \otimes 1$, S(1) = 1 and $1 \triangleright m = m = m \triangleleft 1$. Now we prove associativity of the action: Let $h, k \in H$ and $m \in M$

$$\begin{split} h.(k.m) &= \sum_{(h)} h_{(1)} \triangleright (k.m) \triangleleft S(h_{(2)}) \\ &= \sum_{(h),(k)} h_{(1)} \triangleright (k_{(1)} \triangleright m \triangleleft S(k_{(2)})) \triangleleft S(h_{(2)}) \\ &= \sum_{(h),(k)} (h_{(1)} \cdot k_{(1)}) \triangleright m \triangleleft (S(k_{(2)}) \cdot S(h_{(2)})) \\ &= \sum_{(h),(k)} (h_{(1)} \cdot k_{(1)}) \triangleright m \triangleleft (S(h_{(2)} \cdot k_{(2)})) \\ &= \sum_{(h),(k)} (hk)_{(1)} \triangleright m \triangleleft S((hk)_{(2)}) \\ &= \sum_{(hk)} (hk)_{(1)} \triangleright m \triangleleft S((hk)_{(2)}) \\ &= (hk).m \end{split}$$

4. How do the actions above look in the graphical notation introduced in the lecture?

Problem 2. Let H be a finite-dimensional Hopf algebra over a field \mathbb{K} . Assume there is a left integral $\lambda \in \mathcal{I}_{\ell}(H)$, such that $\epsilon(\lambda) = 1$. Further let M be a left H-module and $N \subset M$ a submodule.

1. Choose a K-linear $\pi: M \to M$, with $\pi^2 = \pi$ and $\operatorname{im} \pi = N$. Show that

$$\Pi: M \to M, \quad m \mapsto \sum_{(\lambda)} \lambda_{(1)}.\pi(S(\lambda_{(2)}).m)$$

is *H*-linear, $\Pi^2 = \Pi$ and $\operatorname{im}\Pi = N$.

Solution. We first show $im\Pi = N$. Let $n \in N$, i.e. there is is an $m \in M$ with $n = \pi(m)$. Note

$$\pi(n) = \pi^2(m) = \pi(m) = n.$$
(1)

Now we compute

$$\Pi(\pi(m)) = \sum_{(\lambda)} \lambda_{(1)} \cdot \pi(S(\lambda_{(2)}) \cdot n) \stackrel{(1)}{=} \sum_{(\lambda)} (\lambda_{(1)} \cdot S(\lambda_{(2)})) \cdot n = \underbrace{\epsilon(\lambda)}_{=1 \text{ by assumption}} \cdot n = n$$

So $\operatorname{im}\Pi = N$. Now we show $\Pi^2 = \Pi$. Since $\operatorname{im}\Pi = \operatorname{im}\pi$ for every $m \in M$ there is a $M' \in M$ such that $\Pi(m) = \pi(m')$ and we get

$$\Pi(\Pi(m)) = \Pi(\pi(m')) = \pi(m') = \Pi(m).$$

We still have to check H-linearity: Note for every $h \in H$

$$\Delta(\lambda) \otimes h \stackrel{\text{couni.}}{=} \sum_{(h)} \Delta(\epsilon(h_{(1)}) \cdot \lambda) \otimes h_{(2)} \stackrel{\text{left-int.}}{=} \sum_{(h)} \Delta(h_{(1)} \cdot \lambda) \otimes h_{(2)}$$
$$= \sum_{(h)(\lambda)} h_{(1)}\lambda_{(1)} \otimes h_{(2)}\lambda_{(2)} \otimes h_{(3)}$$
(2)

So we get

$$\begin{split} \Pi(h.m) &= \sum_{(\lambda)} \lambda_{(1)} \cdot \pi(S(\lambda_{(2)}) \cdot h.m) \\ &= \sum_{(h)(\lambda)} h_{(1)} \lambda_{(1)} \pi(S(h_{(2)} \lambda_{(2)}) h_{(3)}m) \qquad by (2) \\ &= \sum_{(h)(\lambda)} h_{(1)} \lambda_{(1)} \pi(S(\lambda_{(2)}) S(h_{(2)}) h_{(3)}m) \qquad S \text{ anti-hom.} \\ &= \sum_{(h)(\lambda)} h_{(1)} \lambda_{(1)} \pi(S(\lambda_{(2)}) \epsilon(h_{(2)})m) \qquad S \text{ antipode} \\ &= \sum_{(\lambda)} h \lambda_{(1)} \pi(S(\lambda_{(2)})m) \qquad \text{couni.} \\ &= h \Pi(m) \end{split}$$

- 2. Show that there is a complement for every H-submodule $N \subset M$, i.e. there exists an H-submodule P of M, such that $M = N \oplus P$.

Solution.

Take the kernel $P := \ker \Pi$, it is an H-submodule of M since Π is H-linear. We have to show $M = \ker \Pi \oplus \operatorname{im}\Pi$. Write $m = \Pi(m) + m - \Pi(m)$. From $\Pi^2 = \Pi$ we see $\Pi(m) \in \operatorname{im}\Pi = N$ and $m - \Pi(m) \in \ker \Pi = P$. Now let $m \in \ker \Pi \cap \operatorname{im}\Pi$, then there is $n \in M$ such that $m = \Pi(n)$ and we have

$$0 = \Pi(m) = \Pi(\Pi n) = \Pi(n) = m.$$

Problem 3. Let \mathbb{K} be a field of characteristic 2, and let \mathfrak{g} be the following 2-dimensional Lie algebra over k: as a k-vector space, it is spanned by x and y, and [x, y] = x.

1. Show that \mathfrak{g} can be endowed with a structure of restricted Lie algebra.

Solution. We have $(\operatorname{ad} x)^2 = 0$ and $(\operatorname{ad} y)^2 = \operatorname{ad} y$, this suggests to set $x^{[2]} = 0$ and $y^{[2]} = y$. So that we set for all $(\lambda, \mu) \in \mathbb{K}^2$ the following:

$$[\lambda x + \mu y)^{[2]} = \mu^2 y + \mu \lambda x$$

With this definition we have indeed for all $a, b \in \mathfrak{g}$ and $\lambda \in \mathbb{K}$:

$$(\lambda a)^{[2]} = \lambda^2 a^{[2]}, \quad ad(a^{[2]}) = (ad(a))^2 \quad (a+b)^{[2]} = a^{[2]} + b^{[2]} + [b,a].$$

2. Recall the structure of restricted Lie algebra on $\mathcal{U}(\mathfrak{g}) = U(\mathfrak{g})/I$ where I is the ideal of $U(\mathfrak{g})$ generated by $a^{[2]} - a^2$, for all $a \in \mathfrak{g}$.

Solution. We just need to give the application $\bullet^{[2]}$: we set $x^{[2]} = x^2 (:= x \otimes x)$ for all $x \in U(\mathfrak{g})$. This is consistent with the definition on \mathfrak{g} and all the relations $\bullet^{[2]}$ should satisfied are satisfied.

3. Give a basis of $\mathcal{U}(\mathfrak{g})$.

Solution. A base is given by (1, x, y, xy): The PBW theorem tells us that a base of $U(\mathfrak{g})$ is given by $(x^i y^j)_{(i,j) \in \mathbb{N}^2}$. With the relations $y^2 = y^{[2]} = y$ and $x^{[2]} = x^2 = 0$, we have that (1, x, y, xy) spans $\mathcal{U}(\mathfrak{g})$.

4. Recall the structure of Hopf Algebra on $\mathcal{U}(\mathfrak{g})$.

Solution. This is given by

$$\begin{aligned} \epsilon(1) &= 1, \ \epsilon(x) = \epsilon(y) = 0, \\ \Delta(1) &= 1 \otimes 1, \ \Delta(x) = x \otimes 1 + 1 \otimes x, \ \Delta(y) = y \otimes 1 + 1 \otimes y, \quad S(1) = 1, \ S(x) = x, \ S(y) = y. \end{aligned}$$

5. Compute the left and right integrals of H.

Solution. We easily check that $\int_{H}^{l} = \mathbb{K}xy$ and that $\int_{H}^{r} = \mathbb{K}yx$. It means that they are not equal even if the Hopf algebra was cocommutative.

Problem 4. 1. Let *H* be a Hopf algebra, prove the following equality for all $f \in H^*$ and all $x, y \in H$:

$$(f \rightharpoonup x)y = \sum_{(y)} (f \leftarrow y_{(2)}) \rightharpoonup (xy_{(1)})$$

Solution. We can definitely do this graphically, but here is a "classical" proof:

$$\begin{split} \sum_{(y)} (f \leftarrow y_{(2)}) \rightharpoonup (xy_{(1)}) &= \sum_{(y)} (S(y_{(2)}) \rightharpoonup f) \rightharpoonup (xy_{(1)}) \\ &= \sum_{(y), (f)} f_{(2)}(S(y_{(2)}))f_{(1)}) \rightharpoonup (xy_{(1)}) \\ &= \sum_{(x), (y), (f)} f_{(2)}(S(y_{(3)}))f_{(1)}(x_{(2)}y_{(2)})x_{(1)}y_{(1)} \\ &= \sum_{(x), (y), (f)} f_{(2)}(S(y_{(3)}))f_{(1)}(x_{(2)}y_{(2)})x_{(1)}y_{(1)} \\ &= \sum_{(x), (y)} f(x_{(2)}y_{(2)}S(y_{(3)}))x_{(1)}y_{(1)} \\ &= \sum_{(x), (y)} f(x_{(2)}x_{(2)}e(y_{2}))x_{(1)}y_{(1)} \\ &= \sum_{(x), (y)} f(x_{(2)})x_{(1)}y_{(1)} \\ &= \sum_{(x), (y)} f(x_{(2)})x_{(1)}y_{(1)} \\ &= \sum_{(x)} f(x_{(2)})x_{(1)}y_{(1)} \\ &= \sum_{(x)} f(x_{(2)})x_{(1)}y \\ &= (f \rightharpoonup x)y \end{split}$$

2. Show that if J is a right ideal in H, then the right coideal (or equivalently the left rational H^* -module) generated by J is still a right ideal.

Solution. This is the interpretation of the previous statement: H is a aright co-module over itself, hence it is a rational H^* -module (via the \rightarrow -action), hence being a right co-ideal of H is the same as being a left H^* module.

3. Show that it $K \subset H$ is a right ideal and a right coideal, then K is an H-Hopf module, and prove that K = H.

Solution. We just need to prove that $\Delta : K \to K \otimes H$ is a map of H-modules. Let $h \in H$ and $k \in k$, we want to show that the following equality holds: $\Delta(kh) = h\Delta(k)$. This is trivial since this equality holds for $\Delta : H \to H \otimes H$. Hence K is a H-Hopf module. Using theorem 3.1.5 of the script, we have that: $K \simeq K^{coH} \otimes H$. This proves that H = K.

4. Prove that of an Hopf algebra H contains a non-zero finite dimensional right ideal, it is itself finite dimensional.

Solution. Thank to the previous question, we just need to show that, if J is a non-zero finite dimensional ideal of H, then H contains a finite dimensional tight ideal and right co-ideal. We claim that the co-ideal K generated by J satisfies this.

We already did this once: let (k_i) be a base of J, and let us write $\Delta(k_i) = \sum_j k_{ij} \otimes h_{ij}$. I claim that the co-ideal generated by J is included in the vector space spanned by the k_{ij} 's. The fact that it contains K follows from the property of the co-unit: for all $i, k_i = \sum_j k_{ij} \epsilon(h_{ij})$. Furthermore, it is indeed a finite dimensional. We need to see that it contains a co-ideal containing K. We use once more the fact that a right co-ideal is a left H^* -module. Hence the right co-ideal we are looking for is nothing but $H^* \rightharpoonup J$, and if f is an element of H^* , we have for all $i: f \rightharpoonup k_i = \sum_j f(h_{ij})k_{ij}$.

This proves that K is a finite dimensional right ideal and right co-ideal, as we have $K \simeq H$, H is finite dimensional.

5. Prove that if H is a Hopf algebra and $\{0\} \neq J$ is a right coideal, then JH = H.

Solution. Le us prove that JH is a right still co-ideal of H. Just as before, we will prove instead that JH is a left H^* -module. for all $ff \in H^*$, x in J and $h \in H$, we have the following:

$$\begin{split} f &\leftarrow (xh) = \sum_{(xh)} (xh)_{(1)} f((xh)_{(2)}) \\ &= \sum_{(x), (h)} x_{(1)} h_{(1)} f(x_{(2)} h_{(2)}) \\ &= \sum_{(x), (h), (f)} x_{(1)} h_{(1)} f_{(1)}(x_{(2)}) f_{(2)}(h_{(2)}) \\ &= \sum_{(x), (h), (f)} x_{(1)} f_{(1)}(x_{(2)}) h_{(1)} f_{(2)}(h_{(2)}) \\ &= \sum_{(f)} (f_{(1)} \rightharpoonup x) \cdot (f_{(2)} \rightharpoonup h). \end{split}$$

This shows that JH is a sub H^* -module of H, hence JH is a non-zero right co-ideal and right ideal of H, and it is equal to H, thanks to question 3.