Sheet 8

Problem 1. Let H be a finite dimensional Hopf algebra. In this case we know that H^{*} is also a Hopf algebra. We consider the multiplication in H^{*} given by

$$
\langle f \cdot g, h\rangle=\sum_{(h)} f\left(h_{(1)}\right) \cdot g\left(h_{(2)}\right) \quad f, g \in H^{*}, h \in H
$$

1. Show that the following defines a left resp. right action of the algebra H^{*} on the vector space H.

$$
f \rightharpoonup h:=\sum_{(h)} f\left(h_{(2)}\right) \cdot h_{(1)}, \quad h \leftharpoonup f:=\sum_{(h)} f\left(h_{(1)}\right) \cdot h_{(2)} \quad f \in H^{*}, h \in H .
$$

Show that H is an H^{*}-bimodule with the above actions, i.e. $(f \rightharpoonup h) \leftharpoonup g=f \rightharpoonup(h \leftharpoonup g)$ for all $f, g \in H^{*}$ and $h \in H$.

Solution. The unit of H^{*} is ϵ, so we have to prove for every $h \in H$ the equality

$$
\epsilon \rightharpoonup h=h=h \leftharpoonup \epsilon
$$

which holds by counitality of Δ. In the following let $h \in H$ and $f, g \in H^{*}$. We show $f \rightharpoonup(g \rightharpoonup h)=$ $(f \cdot g) \rightharpoonup h:$

$$
\begin{aligned}
f \rightharpoonup(g \rightharpoonup h) & =\sum_{(h)} g\left(h_{(2)}\right) \cdot\left(f \rightharpoonup h_{(1)}\right) \\
& =\sum_{(h)} g\left(h_{(3)}\right) \cdot f\left(h_{(2)}\right) \cdot h_{(1)} \\
& =\sum_{(h)}(f \cdot g)\left(h_{(2)}\right) \cdot h_{(1)} \\
& =(f \cdot g) \rightharpoonup h
\end{aligned}
$$

Now we check $(h \leftharpoonup f) \leftharpoonup g=h \leftharpoonup(f \cdot g)$:

$$
\begin{aligned}
(h \leftharpoonup f) \leftharpoonup g & =\sum_{(h)} f\left(h_{(1)}\right)\left(h_{(2)} \leftharpoonup g\right) \\
& =\sum_{(h)} f\left(h_{(1)}\right) \cdot g\left(h_{(2)}\right) \cdot h_{(3)} \\
& =\sum_{(h)}(f \cdot g)\left(h_{(1)}\right) \cdot h_{(2)} \\
& =h \leftharpoonup(f \cdot g)
\end{aligned}
$$

At last we prove $(f \rightharpoonup h) \leftharpoonup g=f \rightharpoonup(h \leftharpoonup g)$:

$$
\begin{aligned}
(f \rightharpoonup h) \leftharpoonup g & =\sum_{(h)} f\left(h_{(2)} \cdot\left(h_{(1)} \leftharpoonup g\right)\right. \\
& =\sum_{(h)} f\left(h_{(3)} \cdot g\left(h_{(1)}\right) h_{(2)}\right. \\
& =\sum_{(h)} g\left(h_{(1)}\right) \cdot\left(f \rightharpoonup h_{(2)}\right) \\
& =f \rightharpoonup(h \leftharpoonup g)
\end{aligned}
$$

2. Show that the following defines a left resp. right action of H on the vector space H^{*}

$$
h \rightharpoonup f:=(k \mapsto\langle f, k h\rangle), \quad f \leftharpoonup h:=(k \mapsto\langle f, h k\rangle) \quad f \in H^{*}, h \in H .
$$

Show that H^{*} is an H-bimodule with the above actions, i.e. $(h \rightharpoonup f) \leftharpoonup k=h \rightharpoonup(f \leftharpoonup k)$ for all $f \in H^{*}$ and $h, k \in H$.

Solution. We have to show $1 \rightharpoonup f=f=f \leftharpoonup 1$. This follows since for all $\ell \in H$ we have

$$
(1 \rightharpoonup f)(\ell)=f(\ell \cdot 1)=f(\ell)=f(1 \cdot \ell)=(f \leftharpoonup 1)(\ell) .
$$

In the following assume $h, k, \ell \in H$ and $f \in H^{*}$. We prove $h \rightharpoonup(k \rightharpoonup f)=(h k) \rightharpoonup f$:

$$
(h \rightharpoonup(k \rightharpoonup f))(\ell)=(k \rightharpoonup f)(\ell h)=f((\ell h) k)=f(\ell(h k))=((h k) \rightharpoonup f)(\ell) .
$$

Next we show $(f \leftharpoonup h) \leftharpoonup k=f \leftharpoonup(h k)$:

$$
((f \leftharpoonup h) \leftharpoonup k)(\ell)=(f \leftharpoonup h)(k \ell)=f(h(k \ell))=f((h k) \ell)=(f \leftharpoonup(h k))(\ell) .
$$

The last thing to show is $(h \rightharpoonup f) \leftharpoonup k=h \rightharpoonup(f \leftharpoonup k)$:

$$
\begin{aligned}
((h \rightharpoonup f) \leftharpoonup k)(\ell) & =(h \rightharpoonup f)(k \ell)=f((k \ell) h)=f(k(\ell h)) \\
& =(f \leftharpoonup k)(\ell h)=(h \rightharpoonup(f \leftharpoonup k))(\ell) .
\end{aligned}
$$

3. Show that H^{*} becomes a left H-module with

$$
h . f:=\sum_{(h)} h_{(1)} \rightharpoonup f \leftharpoonup S\left(h_{(2)}\right) \quad f \in H^{*}, h \in H
$$

This action is called coadjoint (left) action of H on H^{*}.

Solution. We show a more general result: Let M be an H-bimodule, i.e. there are an H-left action (denoted by $h \triangleright m$) and an H-right action (denoted by $m \triangleleft k$) on M, such that the bimodule property holds:

$$
(h \triangleright m) \triangleleft k=h \triangleright(m \triangleleft k) \quad \text { for all } h, k \in H \text { and } m \in M .
$$

The vector space M has the structure of an H left-module by

$$
h . m:=\sum_{(h)} h_{(1)} \triangleright m \triangleleft S\left(h_{(2)}\right) .
$$

Note that the bimodule property allows us to omit parentheses. The equality $1 . m=m$ for $m \in M$ follows by $\Delta(1)=1 \otimes 1, S(1)=1$ and $1 \triangleright m=m=m \triangleleft 1$. Now we prove associativity of the action: Let $h, k \in H$ and $m \in M$

$$
\begin{array}{rlr}
h .(k . m) & =\sum_{(h)} h_{(1)} \triangleright(k . m) \triangleleft S\left(h_{(2)}\right) \\
& =\sum_{(h),(k)} h_{(1)} \triangleright\left(k_{(1)} \triangleright m \triangleleft S\left(k_{(2)}\right)\right) \triangleleft S\left(h_{(2)}\right) & \\
& =\sum_{(h),(k)}\left(h_{(1)} \cdot k_{(1)}\right) \triangleright m \triangleleft\left(S\left(k_{(2)}\right) \cdot S\left(h_{(2)}\right)\right. & \quad \text { associativity of } \triangleright \text { and } \triangleleft \\
& =\sum_{(h),(k)}\left(h_{(1)} \cdot k_{(1)}\right) \triangleright m \triangleleft\left(S\left(h_{(2)} \cdot k_{(2)}\right)\right) & S \text { is anti-homomorphism } \\
& =\sum_{(h k)}(h k)_{(1)} \triangleright m \triangleleft S\left((h k)_{(2)}\right) & \Delta \text { is algebra homomorphism } \\
& =(h k) \cdot m &
\end{array}
$$

4. How do the actions above look in the graphical notation introduced in the lecture?

Problem 2. Let H be a finite-dimensional Hopf algebra over a field \mathbb{K}. Assume there is a left integral $\lambda \in \mathcal{I}_{\ell}(H)$, such that $\epsilon(\lambda)=1$. Further let M be a left H-module and $N \subset M$ a submodule.

1. Choose a \mathbb{K}-linear $\pi: M \rightarrow M$, with $\pi^{2}=\pi$ and $\operatorname{im} \pi=N$. Show that

$$
\Pi: M \rightarrow M, \quad m \mapsto \sum_{(\lambda)} \lambda_{(1)} \cdot \pi\left(S\left(\lambda_{(2)}\right) \cdot m\right)
$$

is H-linear, $\Pi^{2}=\Pi$ and $\operatorname{im} \Pi=N$.

Solution. We first show $\operatorname{im} \Pi=N$. Let $n \in N$, i.e. there is is an $m \in M$ with $n=\pi(m)$. Note

$$
\begin{equation*}
\pi(n)=\pi^{2}(m)=\pi(m)=n . \tag{1}
\end{equation*}
$$

Now we compute

$$
\Pi(\pi(m))=\sum_{(\lambda)} \lambda_{(1)} \cdot \pi\left(S\left(\lambda_{(2)}\right) \cdot n\right) \stackrel{(1)}{=} \sum_{(\lambda)}\left(\lambda_{(1)} \cdot S\left(\lambda_{(2)}\right)\right) \cdot n=\underbrace{\epsilon(\lambda)}_{=1 \text { by assumption }} \cdot n=n
$$

So $\operatorname{im} \Pi=N$. Now we show $\Pi^{2}=\Pi$. Since $\operatorname{im} \Pi=\operatorname{im} \pi$ for every $m \in M$ there is a $M^{\prime} \in M$ such that $\Pi(m)=\pi\left(m^{\prime}\right)$ and we get

$$
\Pi(\Pi(m))=\Pi\left(\pi\left(m^{\prime}\right)\right)=\pi\left(m^{\prime}\right)=\Pi(m) .
$$

We still have to check H-linearity: Note for every $h \in H$

$$
\begin{align*}
& \Delta(\lambda) \otimes h \stackrel{\text { couni. }}{=} \sum_{(h)} \Delta\left(\epsilon\left(h_{(1)}\right) \cdot \lambda\right) \otimes h_{(2)} \stackrel{\text { left-int. }}{=} \sum_{(h)} \Delta\left(h_{(1)} \cdot \lambda\right) \otimes h_{(2)} \\
&=\sum_{(h)(\lambda)} h_{(1)} \lambda_{(1)} \otimes h_{(2)} \lambda_{(2)} \otimes h_{(3)} \tag{2}
\end{align*}
$$

So we get

$$
\begin{array}{rlr}
\Pi(h . m) & =\sum_{(\lambda)} \lambda_{(1)} \cdot \pi\left(S\left(\lambda_{(2)}\right) \cdot h . m\right) \\
& =\sum_{(h)(\lambda)} h_{(1)} \lambda_{(1)} \pi\left(S\left(h_{(2)} \lambda_{(2)}\right) h_{(3)} m\right) & \text { by (2) } \\
& =\sum_{(h)(\lambda)} h_{(1)} \lambda_{(1)} \pi\left(S\left(\lambda_{(2)}\right) S\left(h_{(2)}\right) h_{(3)} m\right) & S \text { anti-hom. } \\
& =\sum_{(h)(\lambda)} h_{(1)} \lambda_{(1)} \pi\left(S\left(\lambda_{(2)}\right) \epsilon\left(h_{(2)}\right) m\right) & S \text { antipode } \\
& =\sum_{(\lambda)} h \lambda_{(1)} \pi\left(S\left(\lambda_{(2)}\right) m\right) \\
& =h \Pi(m) & \text { couni. }
\end{array}
$$

2. Show that there is a complement for every H-submodule $N \subset M$, i.e. there exists an H-submodule P of M, such that $M=N \oplus P$.

Solution.

Take the kernel $P:=\operatorname{ker} \Pi$, it is an H-submodule of M since Π is H-linear. We have to show $M=\operatorname{ker} \Pi \oplus$ $\operatorname{im} \Pi$. Write $m=\Pi(m)+m-\Pi(m)$. From $\Pi^{2}=\Pi$ we see $\Pi(m) \in \operatorname{im} \Pi=N$ and $m-\Pi(m) \in \operatorname{ker} \Pi=P$. Now let $m \in \operatorname{ker} \Pi \cap \mathrm{im} \Pi$, then there is $n \in M$ such that $m=\Pi(n)$ and we have

$$
0=\Pi(m)=\Pi(\Pi n)=\Pi(n)=m .
$$

Problem 3. Let \mathbb{K} be a field of characteristic 2 , and let \mathfrak{g} be the following 2-dimensional Lie algebra over k : as a k-vector space, it is spanned by x and y, and $[x, y]=x$.

1. Show that \mathfrak{g} can be endowed with a structure of restricted Lie algebra.

Solution. We have $(\operatorname{ad} x)^{2}=0$ and $(\operatorname{ad} y)^{2}=\operatorname{ad} y$, this suggests to set $x^{[2]}=0$ and $y^{[2]}=y$. So that we set for all $(\lambda, \mu) \in \mathbb{K}^{2}$ the following:

$$
(\lambda x+\mu y)^{[2]}=\mu^{2} y+\mu \lambda x .
$$

With this definition we have indeed for all $a, b \in \mathfrak{g}$ and $\lambda \in \mathbb{K}$:

$$
(\lambda a)^{[2]}=\lambda^{2} a^{[2]}, \quad \operatorname{ad}\left(a^{[2]}\right)=(a d(a))^{2} \quad(a+b)^{[2]}=a^{[2]}+b^{[2]}+[b, a] .
$$

2. Recall the structure of restricted Lie algebra on $\mathcal{U}(\mathfrak{g})=U(\mathfrak{g}) / I$ where I is the ideal of $U(\mathfrak{g})$ generated by $a^{[2]}-a^{2}$, for all $a \in \mathfrak{g}$.

Solution. We just need to give the application ${ }^{[2]}$: we set $x^{[2]}=x^{2}(:=x \otimes x)$ for all $x \in \mathcal{U}(\mathfrak{g})$. This is consistent with the definition on \mathfrak{g} and all the relations $\bullet^{[2]}$ should satisfied are satisfied.
3. Give a basis of $\mathcal{U}(\mathfrak{g})$.

Solution. A base is given by $(1, x, y, x y)$: The PBW theorem tells us that a base of $U(\mathfrak{g})$ is given by $\left(x^{i} y^{j}\right)_{(i, j) \in \mathbb{N}^{2}}$. With the relations $y^{2}=y^{[2]}=y$ and $x^{[2]}=x^{2}=0$, we have that $(1, x, y, x y)$ spans $\mathcal{U}(\mathfrak{g})$.
4. Recall the structure of Hopf Algebra on $\mathcal{U}(\mathfrak{g})$.

Solution. This is given by

$$
\begin{aligned}
& \epsilon(1)=1, \epsilon(x)=\epsilon(y)=0 \\
& \Delta(1)=1 \otimes 1, \Delta(x)=x \otimes 1+1 \otimes x, \Delta(y)=y \otimes 1+1 \otimes y, \quad S(1)=1, S(x)=x, S(y)=y
\end{aligned}
$$

5. Compute the left and right integrals of H.

Solution. We easily check that $\int_{H}^{l}=\mathbb{K} x y$ and that $\int_{H}^{r}=\mathbb{K} y x$. It means that they are not equal even if the Hopf algebra was cocommutative.

Problem 4. 1. Let H be a Hopf algebra, prove the following equality for all $f \in H^{\star}$ and all $x, y \in H$:

$$
(f \rightharpoonup x) y=\sum_{(y)}\left(f \leftharpoondown y_{(2)}\right) \rightharpoonup\left(x y_{(1)}\right)
$$

Solution. We can definitely do this graphically, but here is a "classical" proof:

$$
\begin{aligned}
\sum_{(y)}\left(f \leftharpoondown y_{(2)}\right) \rightharpoonup\left(x y_{(1)}\right) & =\sum_{(y)}\left(S\left(y_{(2)}\right) \rightharpoonup f\right) \rightharpoonup\left(x y_{(1)}\right) \\
& \left.=\sum_{(y),(f)} f_{(2)}\left(S\left(y_{(2)}\right)\right) f_{(1)}\right) \rightharpoonup\left(x y_{(1)}\right) \\
& =\sum_{(x),(y),(f)} f_{(2)}\left(S\left(y_{(3)}\right)\right) f_{(1)}\left(x_{(2)} y_{(2)}\right) x_{(1)} y_{(1)} \\
& =\sum_{(x),(y),(f)} f_{(2)}\left(S\left(y_{(3)}\right)\right) f_{(1)}\left(x_{(2)} y_{(2)}\right) x_{(1)} y_{(1)} \\
& =\sum_{(x),(y),(f)} f_{(1)}\left(x_{(2)} y_{(2)}\right)\left(f_{(2)} S\left(y_{(3)}\right)\right) x_{(1)} y_{(1)} \\
& =\sum_{(x),(y)} f\left(x_{(2)} y_{(2)} S\left(y_{(3)}\right)\right) x_{(1)} y_{(1)} \\
& =\sum_{(x),(y)} f\left(x_{(2)} \epsilon\left(y_{2}\right)\right) x_{(1)} y_{(1)} \\
& =\sum_{(x),(y)} f\left(x_{(2)}\right) x_{(1)} y_{(1)} \epsilon\left(y_{2}\right) \\
& =\sum_{(x)} f\left(x_{(2)}\right) x_{(1)} y \\
& =(f \rightharpoonup x) y
\end{aligned}
$$

2. Show that if J is a right ideal in H, then the right coideal (or equivalently the left rational H^{*}-module) generated by J is still a right ideal.

Solution. This is the interpretation of the previous statement: H is a aright co-module over itself, hence it is a rational $H *$-module (via the - -action), hence being a right co-ideal of H is the same as being a left H^{*} module.
3. Show that it $K \subset H$ is a right ideal and a right coideal, then K is an H-Hopf module, and prove that $K=H$.

Solution. We just need to prove that $\Delta: K \rightarrow K \otimes H$ is a map of H-modules. Let $h \in H$ and $k \in k$, we want to show that the following equality holds: $\Delta(k h)=h \Delta(k)$. This is trivial since this equality holds for $\Delta: H \rightarrow H \otimes H$. Hence K is a H-Hopf module. Using theorem 3.1.5 of the script, we have that: $K \simeq K^{c o H} \otimes H$. This proves that $H=K$.
4. Prove that of an Hopf algebra H contains a non-zero finite dimensional right ideal, it is itself finite dimensional.

Solution. Thank to the previous question, we just need to show that, if J is a non-zero finite dimensional ideal of H, then H contains a finite dimensional tight ideal and right co-ideal. We claim that the co-ideal K generated by J satisfies this.
We already did this once: let $\left(k_{i}\right)$ be a base of J, and let us write $\Delta\left(k_{i}\right)=\sum_{j} k_{i j} \otimes h_{i j}$. I claim that the co-ideal generated by J is included in the vector space spanned by the $k_{i j}$'s. The fact that it contains K follows from the property of the co-unit: for all $i, k_{i}=\sum_{j} k_{i j} \epsilon\left(h_{i j}\right)$. Furthermore, it is indeed a finite dimensional. We need to see that it contains a co-ideal containing K. We use once more the fact that a right co-ideal is a left H^{*}-module. Hence the right co-ideal we are looking for is nothing but $H^{*} \rightharpoonup J$, and if f is an element of H^{*}, we have for all i: $f \rightharpoonup k_{i}=\sum_{j} f\left(h_{i j}\right) k_{i j}$.
This proves that K is a finite dimensional right ideal and right co-ideal, as we have $K \simeq H, H$ is finite dimensional.
5. Prove that if H is a Hopf algebra and $\{0\} \neq J$ is a right coideal, then $J H=H$.

Solution. Le us prove that $J H$ is a right still co-ideal of H. Just as before, we will prove instead that JH is a left H^{*}-module. for all $f f \in H^{*}, x$ in J and $h \in H$, we have the following:

$$
\begin{aligned}
f \leftharpoonup(x h) & =\sum_{(x h)}(x h)_{(1)} f\left((x h)_{(2)}\right) \\
& =\sum_{(x),(h)} x_{(1)} h_{(1)} f\left(x_{(2)} h_{(2)}\right) \\
& =\sum_{(x),(h),(f)} x_{(1)} h_{(1)} f_{(1)}\left(x_{(2)}\right) f_{(2)}\left(h_{(2)}\right) \\
& =\sum_{(x),(h),(f)} x_{(1)} f_{(1)}\left(x_{(2)}\right) h_{(1)} f_{(2)}\left(h_{(2)}\right) \\
& =\sum_{(f)}\left(f_{(1)} \rightharpoonup x\right) \cdot\left(f_{(2)} \rightharpoonup h\right) .
\end{aligned}
$$

This shows that $J H$ is a sub H^{*}-module of H, hence $J H$ is a non-zero right co-ideal and right ideal of H, and it is equal to H, thanks to question 3.

