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Problem 1. Let H be a �nite dimensional Hopf algebra. In this case we know that H∗ is also a Hopf algebra.
We consider the multiplication in H∗ given by

〈f · g, h〉 =
∑
(h)

f(h(1)) · g(h(2)) f, g ∈ H∗, h ∈ H.

1. Show that the following de�nes a le� resp. right action of the algebra H∗ on the vector space H .

f ⇀ h :=
∑
(h)

f(h(2)) · h(1), h ↼ f :=
∑
(h)

f(h(1)) · h(2) f ∈ H∗, h ∈ H.

Show that H is an H∗-bimodule with the above actions, i.e. (f ⇀ h) ↼ g = f ⇀ (h ↼ g) for all
f, g ∈ H∗ and h ∈ H .

Solution. �e unit of H∗ is ε, so we have to prove for every h ∈ H the equality

ε ⇀ h = h = h ↼ ε

which holds by counitality of ∆. In the following let h ∈ H and f, g ∈ H∗. We show f ⇀ (g ⇀ h) =
(f · g) ⇀ h:

f ⇀ (g ⇀ h) =
∑
(h)

g(h(2)) · (f ⇀ h(1))

=
∑
(h)

g(h(3)) · f(h(2)) · h(1)

=
∑
(h)

(f · g)(h(2)) · h(1)

= (f · g) ⇀ h

Now we check (h ↼ f) ↼ g = h ↼ (f · g):

(h ↼ f) ↼ g =
∑
(h)

f(h(1))(h(2) ↼ g)

=
∑
(h)

f(h(1)) · g(h(2)) · h(3)

=
∑
(h)

(f · g)(h(1)) · h(2)

= h ↼ (f · g)
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At last we prove (f ⇀ h) ↼ g = f ⇀ (h ↼ g):

(f ⇀ h) ↼ g =
∑
(h)

f(h(2) · (h(1) ↼ g)

=
∑
(h)

f(h(3) · g(h(1))h(2)

=
∑
(h)

g(h(1)) · (f ⇀ h(2))

= f ⇀ (h ↼ g)

2. Show that the following de�nes a le� resp. right action of H on the vector space H∗

h ⇀ f := (k 7→ 〈f, kh〉), f ↼ h := (k 7→ 〈f, hk〉) f ∈ H∗, h ∈ H.

Show thatH∗ is anH-bimodule with the above actions, i.e. (h ⇀ f) ↼ k = h ⇀ (f ↼ k) for all f ∈ H∗
and h, k ∈ H .

Solution. We have to show 1 ⇀ f = f = f ↼ 1. �is follows since for all ` ∈ H we have

(1 ⇀ f)(`) = f(` · 1) = f(`) = f(1 · `) = (f ↼ 1)(`).

In the following assume h, k, ` ∈ H and f ∈ H∗. We prove h ⇀ (k ⇀ f) = (hk) ⇀ f :

(h ⇀ (k ⇀ f))(`) = (k ⇀ f)(`h) = f((`h)k) = f(`(hk)) = ((hk) ⇀ f)(`).

Next we show (f ↼ h) ↼ k = f ↼ (hk):

((f ↼ h) ↼ k)(`) = (f ↼ h)(k`) = f(h(k`)) = f((hk)`) = (f ↼ (hk))(`).

�e last thing to show is (h ⇀ f) ↼ k = h ⇀ (f ↼ k):

((h ⇀ f) ↼ k)(`) = (h ⇀ f)(k`) = f((k`)h) = f(k(`h))

= (f ↼ k)(`h) = (h ⇀ (f ↼ k))(`).

3. Show that H∗ becomes a le� H-module with

h.f :=
∑
(h)

h(1) ⇀ f ↼ S(h(2)) f ∈ H∗, h ∈ H

�is action is called coadjoint (le�) action of H on H∗.

Solution. We show a more general result: LetM be anH-bimodule, i.e. there are anH-le� action (denoted by
h . m) and an H-right action (denoted bym / k) onM , such that the bimodule property holds:

(h . m) / k = h . (m / k) for all h, k ∈ H andm ∈M .
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�e vector spaceM has the structure of an H le�-module by

h.m :=
∑
(h)

h(1) . m / S(h(2)) .

Note that the bimodule property allows us to omit parentheses. �e equality 1.m = m form ∈M follows by
∆(1) = 1 ⊗ 1, S(1) = 1 and 1 . m = m = m / 1. Now we prove associativity of the action: Let h, k ∈ H
andm ∈M

h.(k.m) =
∑
(h)

h(1) . (k.m) / S(h(2))

=
∑

(h),(k)

h(1) . (k(1) . m / S(k(2))) / S(h(2))

=
∑

(h),(k)

(h(1) · k(1)) . m / (S(k(2)) · S(h(2))) associativity of . and /

=
∑

(h),(k)

(h(1) · k(1)) . m / (S(h(2) · k(2))) S is anti-homomorphism

=
∑
(hk)

(hk)(1) . m / S((hk)(2)) ∆ is algebra homomorphism

= (hk).m

4. How do the actions above look in the graphical notation introduced in the lecture?

Problem 2. LetH be a �nite-dimensional Hopf algebra over a �eldK. Assume there is a le� integral λ ∈ I`(H),
such that ε(λ) = 1. Further letM be a le� H-module and N ⊂M a submodule.

1. Choose a K-linear π : M →M , with π2 = π and imπ = N . Show that

Π : M →M, m 7→
∑
(λ)

λ(1).π(S(λ(2)).m)

is H-linear, Π2 = Π and imΠ = N .

Solution. We �rst show imΠ = N . Let n ∈ N , i.e. there is is anm ∈M with n = π(m). Note

π(n) = π2(m) = π(m) = n. (1)

Now we compute

Π(π(m)) =
∑
(λ)

λ(1).π(S(λ(2)).n)
(1)
=

∑
(λ)

(λ(1) · S(λ(2))).n = ε(λ)︸︷︷︸
=1 by assumption

.n = n

So imΠ = N . Now we show Π2 = Π. Since imΠ = imπ for every m ∈ M there is a M ′ ∈ M such that
Π(m) = π(m′) and we get

Π(Π(m)) = Π(π(m′)) = π(m′) = Π(m).

We still have to check H-linearity: Note for every h ∈ H

∆(λ)⊗ h couni.
=

∑
(h)

∆(ε(h(1)) · λ)⊗ h(2)
le�-int.

=
∑
(h)

∆(h(1) · λ)⊗ h(2)

=
∑

(h)(λ)

h(1)λ(1) ⊗ h(2)λ(2) ⊗ h(3) (2)
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So we get

Π(h.m) =
∑
(λ)

λ(1).π(S(λ(2)) · h.m)

=
∑

(h)(λ)

h(1)λ(1)π(S(h(2)λ(2))h(3)m) by (2)

=
∑

(h)(λ)

h(1)λ(1)π(S(λ(2))S(h(2))h(3)m) S anti-hom.

=
∑

(h)(λ)

h(1)λ(1)π(S(λ(2))ε(h(2))m) S antipode

=
∑
(λ)

hλ(1)π(S(λ(2))m) couni.

= hΠ(m)

2. Show that there is a complement for every H-submodule N ⊂ M , i.e. there exists an H-submodule P of
M , such thatM = N ⊕ P .

Solution.

Take the kernel P := ker Π, it is anH-submodule ofM since Π isH-linear. We have to showM = ker Π⊕
imΠ. Writem = Π(m)+m−Π(m). From Π2 = Π we see Π(m) ∈ imΠ = N andm−Π(m) ∈ ker Π = P .
Now letm ∈ ker Π ∩ imΠ, then there is n ∈M such thatm = Π(n) and we have

0 = Π(m) = Π(Πn) = Π(n) = m.

Problem 3. Let K be a �eld of characteristic 2, and let g be the following 2-dimensional Lie algebra over k: as a
k-vector space, it is spanned by x and y, and [x, y] = x.

1. Show that g can be endowed with a structure of restricted Lie algebra.

Solution. We have (adx)2 = 0 and (ad y)2 = ad y, this suggests to set x[2] = 0 and y[2] = y. So that we set
for all (λ, µ) ∈ K2 the following:

(λx+ µy)[2] = µ2y + µλx.

With this de�nition we have indeed for all a, b ∈ g and λ ∈ K:

(λa)[2] = λ2a[2], ad(a[2]) = (ad(a))2 (a+ b)[2] = a[2] + b[2] + [b, a].

2. Recall the structure of restricted Lie algebra on U(g) = U(g)/I where I is the ideal of U(g) generated by
a[2] − a2, for all a ∈ g.
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Solution. We just need to give the application •[2]: we set x[2] = x2(:= x ⊗ x) for all x ∈ U(g). �is is
consistent with the de�nition on g and all the relations •[2] should satis�ed are satis�ed.

3. Give a basis of U(g).

Solution. A base is given by (1, x, y, xy): �e PBW theorem tells us that a base ofU(g) is given by (xiyj)(i,j)∈N2 .
With the relations y2 = y[2] = y and x[2] = x2 = 0, we have that (1, x, y, xy) spans U(g).

4. Recall the structure of Hopf Algebra on U(g).

Solution. �is is given by

ε(1) = 1, ε(x) = ε(y) = 0,

∆(1) = 1⊗ 1, ∆(x) = x⊗ 1 + 1⊗ x, ∆(y) = y ⊗ 1 + 1⊗ y, S(1) = 1, S(x) = x, S(y) = y.

5. Compute the le� and right integrals of H .

Solution. We easily check that
∫ l
H

= Kxy and that
∫ r
H

= Kyx. It means that they are not equal even if the
Hopf algebra was cocommutative.

Problem 4. 1. Let H be a Hopf algebra, prove the following equality for all f ∈ H? and all x, y ∈ H :

(f ⇀ x)y =
∑
(y)

(f ↽ y(2)) ⇀ (xy(1))
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Solution. We can de�nitely do this graphically, but here is a “classical” proof:∑
(y)

(f ↽ y(2)) ⇀ (xy(1)) =
∑
(y)

(S(y(2)) ⇀ f) ⇀ (xy(1))

=
∑

(y), (f)

f(2)(S(y(2)))f(1)) ⇀ (xy(1))

=
∑

(x), (y), (f)

f(2)(S(y(3)))f(1)(x(2)y(2))x(1)y(1)

=
∑

(x), (y), (f)

f(2)(S(y(3)))f(1)(x(2)y(2))x(1)y(1)

=
∑

(x), (y), (f)

f(1)(x(2)y(2))(f(2)S(y(3)))x(1)y(1)

=
∑

(x), (y)

f(x(2)y(2)S(y(3)))x(1)y(1)

=
∑

(x), (y)

f(x(2)ε(y2))x(1)y(1)

=
∑

(x), (y)

f(x(2))x(1)y(1)ε(y2)

=
∑
(x)

f(x(2))x(1)y

= (f ⇀ x)y

2. Show that if J is a right ideal in H , then the right coideal (or equivalently the le� rational H∗-module)
generated by J is still a right ideal.

Solution. �is is the interpretation of the previous statement: H is a aright co-module over itself, hence it is
a rational H∗-module (via the ⇀-action), hence being a right co-ideal of H is the same as being a le� H∗

module.

3. Show that it K ⊂ H is a right ideal and a right coideal, then K is an H-Hopf module, and prove that
K = H .

Solution. We just need to prove that ∆ : K → K ⊗ H is a map of H-modules. Let h ∈ H and k ∈ k,
we want to show that the following equality holds: ∆(kh) = h∆(k). �is is trivial since this equality holds
for ∆ : H → H ⊗ H . Hence K is a H-Hopf module. Using theorem 3.1.5 of the script, we have that:
K ' KcoH ⊗H . �is proves that H = K .

4. Prove that of an Hopf algebraH contains a non-zero �nite dimensional right ideal, it is itself �nite dimen-
sional.
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Solution. �ank to the previous question, we just need to show that, if J is a non-zero �nite dimensional ideal of
H , thenH contains a �nite dimensional tight ideal and right co-ideal. We claim that the co-idealK generated
by J satis�es this.

We already did this once: let (ki) be a base of J , and let us write ∆(ki) =
∑
j kij ⊗ hij . I claim that the

co-ideal generated by J is included in the vector space spanned by the kij ’s. �e fact that it containsK follows
from the property of the co-unit: for all i, ki =

∑
j kijε(hij). Furthermore, it is indeed a �nite dimensional.

We need to see that it contains a co-ideal containing K . We use once more the fact that a right co-ideal is a
le�H∗-module. Hence the right co-ideal we are looking for is nothing butH∗ ⇀ J , and if f is an element of
H∗, we have for all i: f ⇀ ki =

∑
j f(hij)kij .

�is proves that K is a �nite dimensional right ideal and right co-ideal, as we have K ' H , H is �nite
dimensional.

5. Prove that if H is a Hopf algebra and {0} 6= J is a right coideal, then JH = H .

Solution. Le us prove that JH is a right still co-ideal of H . Just as before, we will prove instead that JH is a
le� H∗-module. for all ff ∈ H∗, x in J and h ∈ H , we have the following:

f ↼ (xh) =
∑
(xh)

(xh)(1)f((xh)(2))

=
∑

(x), (h)

x(1)h(1)f(x(2)h(2))

=
∑

(x), (h), (f)

x(1)h(1)f(1)(x(2))f(2)(h(2))

=
∑

(x), (h), (f)

x(1)f(1)(x(2))h(1)f(2)(h(2))

=
∑
(f)

(f(1) ⇀ x) · (f(2) ⇀ h).

�is shows that JH is a subH∗-module ofH , hence JH is a non-zero right co-ideal and right ideal ofH , and
it is equal to H , thanks to question 3.
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