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Problem 1. Let A and B be Hopf algebras. Consider the tensor categories A−mod and B−mod of �nite di-
mensional le� modules over A and B. A functor F : A−mod → B−mod is called exact, if for any short exact
sequence

0→ X → Y → Z → 0

in A−mod the sequence
0→ FX → FY → FZ → 0

is exact in B−mod.
Recall that an A-module P is called projective, if HomA(P, •) : C → VectK = K−mod is an exact functor.

1. If P is projective, then • ⊗ P is exact.

Solution. �e functor ⊗ P has a le�-adjoint ⊗ P∨, so ⊗ P is le� exact, and ⊗ P has a right-adjoint
⊗ ∨P , so ⊗ P is right exact. Here we actually did not use that P is projective.

2. If P is projective, then P∨ is projective.

Solution. Let 0→ X → Y → Z → 0 be an exact sequence.
�e functor Hom(P∨, ) is isomorphic to the functor Hom(K, ⊗ P ). �e natural isomorphism is given by:

Hom(P∨,M) ' Hom(K,M ⊗ P )
φ 7→ 1 7→

∑
φ(e∗i )⊗ ei

f 7→ f(p)m ←[ m⊗ p

From part 1. we know that
0→ X ⊗ P → Y ⊗ P → Z ⊗ P → 0

is exact. Now by Lemma 3.2.11 of the script, the object Z⊗P is projective since P is projective. �us the above
sequence splits which is equivalent to

Y ⊗ P ' (X ⊗ P )⊕ (Z ⊗ P ). (1)

If we apply HomH(K, ) we get the sequence

0→ HomH(K, X ⊗ P )→ HomH(K, Y ⊗ P )→ HomH(K, Z ⊗ P )→ 0 (2)

Since the middle term is by (1) isomorphic to

HomH(K, Y ⊗ P ) ∼= HomH(K, X ⊗ P )⊕HomH(K, Z ⊗ P )

the sequence (2) is exact, thus Hom(P∨, ) is exact which means P∨ is projective.
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Problem 2. Let A be an algebra over K. An A-module M is called indecomposable, if M = N ⊕ N ′ implies
that either N or N ′ is the zero module. An A-moduleM is called simple, ifM and 0 are its only submodules.

Show that for a semi-simple algebra A every indecomposable module is simple.

Solution. LetM be indecomposable. Assume that N is a submodule. Since A is semi-simple there is a complement
P forN , i.e.M = N ⊕P . SinceM is indecomposable we concludeN = 0 or P = 0. If P = 0 thenN = M , soM
and 0 are the only submodules ofM thusM is simple.

Problem 3. We consider the following Hopf algebraH (called Sweedler’s Hopf algebra): as an algebra it is given
by the following quotient:

C〈C,X〉/(C2 − 1, X2, CX +XC)

where C〈C,X〉 is the algebra of non-commutative polynomials. �e comultiplication is given by:

∆(C) = C ⊗ C and ∆(X) = C ⊗X +X ⊗ 1.

1. Find a counity and an antipode and prove that H is indeed a Hopf algebra. Remark that H is neither
commutative nor cocommutative.

Solution. First note that ∆ is indeed a morphism of algebra and that the multiplication is a morphism of co-
algebra. �e counity is straightforward: we have to set ε(1) = ε(C) = 1 because they are group-like. From
this follows that ε(X) = 0 and there for ε(CX) = 0. We have to set S(1) = 1 and S(C) = C−1 = C , the
expression of ∆(X) impose S(X) = −CX = XC . �is leads to S(CX) = X . �e only thing to check is
that the antipode does what it should on CX . We have:

m ◦ (S ⊗ id) ◦∆(CX) = m(S(1)⊗ CX + S(CX)⊗ C) = CX +XC = 0 and
m ◦ (id⊗ S) ◦∆(CX) = m(1⊗ S(CX) + CX ⊗ S(C)) = X + CXC = X −X.

2. Find all (up to isomorphism) simple H-modules.

Solution. First of all remark, that if a module is 1 dimensional, then it is simple. We will prove that (up to
isomorphism) there are exactly two simple modules, and both of them are 1-dimensional. LetM be a simple
H-module. �e action of C onM is diagonalisable (because the minimal polynomial of C has simple roots).
We may rightM = M+1 ⊕M−1 where the indices indicates the diagonal action of C . SupposeM+1 is not
trivial. Letm inM+1 a non zero element. IfX ·m = 0, thenKm is a sub-module ofM and hence is equal to
M . IfX ·m 6= 0 thenX ·m belongs toM−1 and theK(X ·m) is a sub-module ofM . �is is absurd. �e same
argumentation works whenM−1 is trivial. We have shown that there are exactly two simple H-modules. On
both of them X acts trivially, while C acts as ±id. We denote them by V+1 and V−1

3. Prove that the tensor product of two simple modules is simple.

Solution. �is is a direct consequence of what we said before. We have:

V+1 ⊗ V+1 ' V−1 ⊗ V−1 ' V+1 and V−1 ⊗ V+1 ' V+1 ⊗ V−1 ' V−1
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4. Find all (up to isomorphism) projective indecomposable H-modules.

Solution. We will show that there are exactly two projective indecomposable H-modules and both of them
have dimension 2. First of all, remark that a projective indecomposable module must be a sub-module of H
itself. Let us show that the two simple modules we found before are not projective:

Let π : H → V+1 be the linear map given by π(1) = π(C) 6= 0 and π(CX) = π(X) = 0. �is is a surjective
H-module map, but it has no section. Hence V+1 is not projctive.

Let π : H → V−1 be the linear map given by π(1) = π(C) = 0 and π(CX) = −π(X) 6= 0. �is is a
surjective H-module map, but it has no section. Hence V+1 is not projctive.

So there is now two options: either H is itself indecomposable or it splits into two indecomposable projective
modules but they might be isomorphic. Let us show that we have:

H ' P+1 ⊕ P−1

with P+1 and P−1 non-isomorphic.

Let P+1 = 〈1 + C,X +XC〉 and P−1 = 〈1− C,X −XC〉. It is easy to show that they are 2-dimensional
H-modules. To show that there are non-isomorphic, one should realize that the action of X eigenspace of C
are di�erent.

5. Prove that the tensor product of any two projective indecomposable H-modules is a direct sum of 2 pro-
jective indecomposable H-modules.

Solution. �is is clear since the tensor product of two projective modules is projective. More precisely, we have:

P−1 ⊗ P−1 ' P−1 ⊗ P+1 ' P+1 ⊗ P−1 ' P+1 ⊗ P+1 ' P−1 ⊕ P+1.

Problem 4. Let H be a �nite dimensional Hopf algebra. We suppose that S as an odd order (ie the smallest
positiv n such that Sn = idH is odd).

1. Prove that H is commutative.

Solution. Let n = 2k + 1 be the rank of S, then we have for all x and y in H :

xy = S2k+1(xy) = S(S2k(x)S2k(y)) = S(S2k(y))S(S2k(x)) = S2k+1(y)S2k+1(x) = yx.

Hence H is commutative.

2. Prove that H is cocommutative.

Solution. Let us recall that ∆ ◦ S = τ ◦ (S ⊗ S) ◦∆ = (S ⊗ S) ◦ τ ◦∆. Hence we have:

∆ = ∆ ◦ S2k+1 = τ2k+1 ◦ (S2k+1 ⊗ S2k+1) ◦∆ = τ ◦∆.

�is show that H is cocommutative.
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3. Prove that S = id

Solution. From question 1 we deduce thanks to 2.5.9 in the script, that the rank of n is smaller than 2, so that
it is equal to 1.

4. Give an example of such a Hopf algebra.

Solution. We need to have S = id. Hence if we consider the Hopf algebra KG with G a group satisfying
g−1 = g. �is implies that G = Z/2Z× Z/2Z× · · · × Z/2Z.
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