Variations on Khovanov homology

joint with Ko Honda (UCLA) and Yin Tian (Beijing)

Université de Nantes - LMJL

June 17th, 2021

Vincent Colin (LMJL)

Introduction

Goal is threefold:

- Set-up the generalized framework for higher-dimensional Heegaard Floer homology.
- Define versions of Khovanov homology for links in S³ and for braids in fibrations over S¹.
- Provide combinatorial versions and interesting *surface algebras*.

Higher-dimensional Heegaard Floer homology

The data:

- (W, β, ϕ) a Weinstein domain of dimension 2n;
- $h \in Symp(W, \partial W, d\beta)$.

This means that:

- $d\beta$ is symplectic;
- the Liouville vector field Y, s.t. i_Ydβ = β, is transversally exiting W along ∂W;
- φ is a Morse function on W, ∂W regular level set and φ is gradient-like for Y.

In particular, $(W, d\beta)$ has a *basis* of Lagrangian *n*-disks a_1, \ldots, a_k .

Example of a surface S = W (n = 1).

Higher-dimensional Heegaard Floer homology The chains:

 $\widehat{\mathit{CF}}(\mathit{W},eta,\phi;\mathit{h})=\oplus_{\mathbf{y}}\Lambda\llbracket\hbar
rbracket$

 $\mathbf{y} = \{y_1 \times [0, 1], \dots, y_k \times [0, 1]\}$ with $y_i \in a_i \cap h(a_{\sigma(i)}), \sigma \in S_k$. Λ is a Novikov ring with \mathbb{Z} -coefficients over some quotient \mathcal{A} of a relative H_2 and $\Lambda[[\hbar]]$ is the ring of formal power series in \hbar over Λ . The intersection $a_i \cap h(a_i)$ is perturbed at the boundary so that only two intersection points remain and we keep only the one of lower index x_i .

Also possible to glue *n*-handles to *W* along ∂a_i and extend a_i to a Lagrangian sphere.

The differential:

The differential $\widehat{\partial}$ is obtained by a count of pseudoholomorphic sections in $(\mathbb{R}_s \times [0,1]_t \times W, d(e^s(dt + \beta), J) \to \mathbb{R} \times [0,1]$ with boundary on Lagrangians $\mathbb{R} \times \{1\} \times a_i$ and $\mathbb{R} \times \{0\} \times h(a_i)$ and asymptotic to some *k*-tuples of chords **y** and **y**' at $\pm \infty$.

The coefficient \hbar registers the euler characteristic of the curve (needed to get compactness). Should also incorporate homological coefficients in [A] to control energy.

The homology is denoted $HF(W, \beta, \phi; h)$.

Some results

Theorem 1

 $HF(W, \beta, \phi; h)$ is independant on the choice of J and of h up to isotopy in $Symp(W, \partial W, d\beta)$. The element $\mathbf{x} = \{x_1, \dots, x_k\}$ is a cycle whose homology class is called the contact class.

In general $\widehat{HF}(W, \beta, \phi; h)$ depends on the choice of β , i.e. on the basis of Lagrangians.

Theorem 2

If $(W, \beta, \phi; h)$ is an open book decomposition supporting a contact manifold (M, ξ) and whose contact class vanishes, then (M, ξ) is not Liouville fillable and satisfies the Weinstein conjecture. Every overtwisted contact manifold is carried by an open book decomposition whose contact class is 0.

Open book decomposition [Giroux]

To $(W^{2n}, \beta, \phi; h)$ can associate a contact (2n + 1)-manifold (M, ξ) .

$$M = W \times [0,1]_t / (h(x),0) \sim (x,1)$$
 and $(y,t) \sim (y,t')$

for every $y \in \partial W$. Roughly,

$$\xi = \ker(dt + \epsilon\beta)$$

on $W_{\epsilon} \times [0,1]/\sim$, where W_{ϵ} small retraction of W and

$$\xi = \ker(\beta|_{\partial W} + r^2 d\theta)$$

in
$$N(K) = K \times D^2_{(r,\theta)}$$
, where $K = \partial W \times [0,1] / \sim$.

Theorem (Giroux-Mohsen)

Every contact manifold is obtained in this way.

Variation on symplectic Khovanov homology

Based on the symplectic reformulation of Khovanov homology by Seidel-Smith with an input by Manolescu.

We formulate a new variation as a special 5-dimensional Heegaard Floer homology.

Given a link $\ell \subset S^3$, put it in braid position σ with respect to the standard open book decomposition with unknotted binding *K*. It intersects a disk page in *k* points.

The associated open book

Consider the 4-dimensional manifold $W_k = \{u^2 + v^2 = P(z)\} \subset \mathbb{C}^3$ where *P* degree *k* polynomial with distinct roots z_1, \ldots, z_k (*A_k*-singularity). It has a projection $(u, v, z) \mapsto z$ to \mathbb{C} which is a Lefschetz fibration to the disk *D* with *k* singular values z_1, \ldots, z_k . This gives a Weinstein domain (W_k, β_k, ϕ_k) with a Lagrangian basis obtained by lifts of *k* arcs from z_i to ∂D (*Lefschetz thimbles*). The braid σ gives a monodromy map of $Diff(D, \{z_1, \ldots, z_k\})$ that lifts to $h \in Symp(W_k, \beta_k)$.

Define $Kh^{\sharp}(W_k, \beta_k, \phi_k; h) := \widehat{HF}(W_k, \beta_k, \phi_k; h)$ with coefficients $\mathbb{Z}/2[\mathcal{A}][\hbar, \hbar^{-1}].$

Invariance

Theorem 3

 $Kh^{\sharp}(W_k, \beta_k, \phi_k; h)$ is a link invariant, i.e. independent on the choice of arcs in D and of the choice of braid representative σ up to positive and negative Markov stabilizations.

Denote by **x** the contact class.

Theorem 4

The contact class $\mathbf{x} =: \psi^{\sharp}(\sigma)$ is invariant of the braid up to positive Markov stabilization.

Similar to the Plamenevskaia invariant of a link transverse to the standard contact plane.

Some computations

Consider the 3-braid $\sigma_{BP,p}$ (Baldwin-Plamenevskaia) with monodromy $\sigma_1^{-p} \circ \sigma_2 \circ \sigma_1^2 \circ \sigma_2$.

Theorem 5

 $\psi^{\sharp}(\sigma_{BP,p}) = 0$, hence for $p \ge 3$, the contact 5-manifolds given by the corresponding open book decompositions $(A_p, \beta_p, \phi_p; \widehat{\sigma_{BP,p}})$ are not Liouville fillable and satisfy the Weinstein conjecture.

The braids $\sigma_{BP,p}$ are *right-veering* and the associated 5-contact manifolds might be tight.

Relation with Khovanov homology

Consider projections v_1 , v_2 of $\mathbb{R} \times [0, 1] \times A_k$ to respectively $\mathbb{R} \times [0, 1]$ and D.

By Manolescu, differential in symplectic Khovanov homology Kh_{symp} counts, for good choice of J, holomorphic curves

 $u : F \to \mathbb{R} \times [0, 1] \times A_k$ such that the map $(v_1 \circ u, v_2 \circ u)$ is an embedding.

By positive intersection for holomorphic curves, the count of the degree of singularities of $(v_1 \circ u, v_2 \circ u)$ can be turned into a filtration. Have a spectral sequence whose E_1 -page is Kh_{symp} and expected to converge to Kh^{\sharp} .

The fully wrapped version of higher-dimensional HF

Back to $(W, \beta, \phi; h)$ as in higher-dimensional HF. Extend W to its completion

$$(\widehat{W},\widehat{eta})=(W,eta)\cup_{\partial W}([0,\infty[_{s} imes\partial W,e^{s}eta|_{\partial W}).$$

The Lagrangian basis a_1, \ldots, a_n extended cylindrically by $\hat{a}_1, \ldots, \hat{a}_n$. Extend *h* to \hat{h} obtained by composing with the time-1 of a quadratic Hamiltonian in e^s .

This time we allow ourselves to take parallel copies of the $\hat{a}_1, \ldots, \hat{a}_n$ and maybe not all of them.

Let *k* be an integer, $\mathbf{m} = (m_1, \dots, m_\kappa)$ partition of *k*. We write $|\mathbf{m}| = \sum_{i=1}^{\kappa} m_i = k$ Algebras:

$$\begin{aligned} & R^{f}(\boldsymbol{W},\boldsymbol{\beta},\boldsymbol{\phi};\boldsymbol{k}) := \oplus_{|\mathbf{m}|=|\mathbf{m}'|=k} \operatorname{Hom}(\widehat{a}_{\mathbf{m}},\widehat{a}_{\mathbf{m}'}), \\ & R^{f}(\boldsymbol{W},\boldsymbol{\beta},\boldsymbol{\phi}) := \oplus_{\boldsymbol{k}\geq 0} R^{f}(\boldsymbol{W},\boldsymbol{\beta},\boldsymbol{\phi};\boldsymbol{k}), \end{aligned}$$

where $\text{Hom}(\hat{a}_{\mathbf{m}}, \hat{a}_{\mathbf{m}'})$ is the Heegaard Floer homology group $CF(\widehat{Id}(\hat{a}_{\mathbf{m}}), \hat{a}_{\mathbf{m}'})$, i.e., we are fully wrapping the first term. Here $\hat{a}_{\mathbf{m}}$ contains m_i copies of \hat{a}_i .

Similarly we define the $R^{f}(W, \beta, \phi; k)$ - and $R^{f}(W, \beta, \phi)$ -bimodules

$$B^{f}(W, \beta, \phi; h; k) := \bigoplus_{|\mathbf{m}| = |\mathbf{m}'| = k} \operatorname{Hom}(\widehat{h}(\widehat{a}_{\mathbf{m}}), \widehat{a}_{\mathbf{m}'}),$$
$$B^{f}(W, \beta, \phi; h) := \bigoplus_{k \ge 0} B^{f}(W, \beta, \phi; h; k).$$

Product structures are obtained by counting multisection of $D_m \times \widehat{W} \to D_m$ where D_m is closed disk with m + 1 punctures on boundary and with suitable Lagrangian boundary conditions and wrapping scheme.

Invariance

Theorem 6

The Hochschild homology of the A_{∞} -bimodule $\mathcal{B}^{f}(W, \beta, \phi; h)$ is invariant under handleslides, i.e., Weinstein homotopies (β_{t}, ϕ_{t}) , $t \in [0, 1]$.

Handlesliding along a chord corresponds to taking the cone of the multiplication by the corresponding intersection point/chord (Seidel $+\epsilon$).

Braid in a surface bundle over S^1

The datum:

- \overline{S} closed surface, $\overline{h} \in Diff(\overline{S})$.
- $N_{(\overline{S},\overline{h})} = \overline{S} \times [0,1]/(\overline{h}(x),0) \sim (x,1)$ mapping torus.
- ℓ link in $N_{(\overline{S},\overline{h})}$ transverse to fibers $\overline{S} \times \{t\}$: a braid.

Let $\ell \cap \overline{S} \times \{0\} = \mathbf{z} = \{z_1, \dots, z_n\}$. Assume $\overline{h} \in Diff(\overline{S}, \mathbf{z} \cup D)$ where D is an open disk in $\overline{S} \setminus \mathbf{z}$.

Remark

Choice of D equivalent to a 1-strand braid K in the complement of ℓ . Our invariant will depend on the isotopy class of K in $N_{(\overline{S},\overline{h})}$ but not on its relative position with ℓ .

Let $S := \overline{S} \setminus D$; $h \in Diff(S, \mathbf{z})$ the restriction of \overline{h} to S.

Consider:

- symplectic Lefschetz fibration $\pi : W_{S,n} \to S$ with base *S* instead of D^2 , regular fiber $A = S^1 \times [-1, 1] \subset T^*S^1$, and *n* critical values z_1, \ldots, z_n .
- {*a*₁,..., *a_n*} of pairwise disjoint half-arcs in *S* joining the critical values of π to ∂*S* augmented by a basis {*a*_{n+1},..., *a*_{n+s}} of *s* properly embedded pairwise disjoint arcs in *S* with endpoints on ∂*S*.

Lift $\{a_1, \ldots, a_n\}$ to Lagrangian disks and $\{a_{n+1}, \ldots, a_{n+s}\}$ to Lagrangian cylinders $a_i \times 0_{T^*S^1}$ (also could choose disks $a_i \times \mathbb{R} \times \{\theta_0\}$). Get L_1, \ldots, L_{n+s} .

Consider possibly parallel copies of arcs, but at most 1 copy of half-arcs, to form an A_{∞} -category $\mathcal{R}^{f}(S, n, \mathbf{a})$, whose objects are $L_{\mathbf{m}}$ and whose morphisms are $CF^{f}(L_{\mathbf{m}}, L_{\mathbf{m}'})$.

$$R^{f}(S, n, \mathbf{a}) := \bigoplus_{k \ge 0, |\mathbf{m}| = |\mathbf{m}'| = k} CF^{f}(L_{\mathbf{m}}, L_{\mathbf{m}'}).$$
(1)

Theorem 7

The Hochschild homology $HH^{f}(S, n, \mathbf{a}; h)$ is an invariant of ℓ as a transverse link in $N_{(\overline{S},\overline{h})}$. It depends on the auxiliary data K but not on the relative positions of ℓ and K in M.

Remark

To upgrade from a transverse link invariant to a genuine link invariant (of a fibration), need to introduce cup- and cap-bimodules and show bimodule equivalences corresponding to standard moves.

- The independance from the choice of arcs and half-arcs comes from Theorem 6 (independance from the basis of Lagrangian in the wrapped higher-HF).
- Handlesliding over half-arcs is invariant on the nose, as in the Kh^{\sharp} case.
- Handlesliding over arcs introduces cones so requires to take Hochschild homology and several copies.
- Isotopying ℓ through *K* corresponds to composing *h* with a Dehn twist parallel to the boundary. Since we are doing the fully wrapped version, it does not change the result.
- Note: We could also add stops along ∂S and get invariants of braids in sutured manifolds.
- Currently developping some combinatorial models for the (stopped or not) surface algebras that look interesting.

Local model (basic version) $S = D^2$, no singularity and 2 stops.

As a graded algebra, R_k is isomorphic to $\mathbb{F}[S_k] \rtimes \Lambda_k$, where $\mathbb{F}[S_k]$ is the group algebra of the symmetric group S_k , Λ_k is the exterior algebra of *k* generators of degree 1 and the symmetric group S_k , whose elements are of degree 0, acts on Λ_k by permuting the generators ξ_i .

Proposition

The cohomology algebra $H(R_k)$ is isomorphic to Λ_k .

We conjecture that R_k is a formal dg algebra, i.e., it is quasi-isomorphic to $H(R_k)$.

Vincent Colin (LMJL)

The graded algebra $\mathbb{F}[S_k] \rtimes \Lambda_k$ is generated by s_i, ξ_j for $1 \le i \le k - 1, 1 \le j \le k$, and satisfies the following defining relations:

$$s_{i}^{2} = 1, \quad s_{i}s_{i+1}s_{i} = s_{i+1}s_{i}s_{i+1}, \quad s_{i}s_{i'} = s_{i'}s_{i} \text{ for } |i - i'| > 1; \quad (2)$$

$$\xi_{j}^{2} = 0, \quad \xi_{j}\xi_{j'} = -\xi_{j'}\xi_{j}, \text{ for } j \neq j';$$

$$\xi_{i}s_{i} = s_{i}\xi_{i+1}, \quad \xi_{i+1}s_{i} = s_{i}\xi_{i}, \quad \xi_{j}s_{i} = s_{i}\xi_{j} \text{ for } j \neq i, i+1.$$

It is a finite-dimensional algebra of rank $2^k k!$. Define a dg algebra $R_k = (\mathbb{F}[S_k] \rtimes \Lambda_k, d)$ by introducing a differential d on the generators as

$$d(\mathbf{1}_k) = 0,$$
 $d(s_i) = \xi_i - \xi_{i+1},$ $d(\xi_j) = 0,$

and extended by the Leibniz rule: $d(ab) = d(a)b + (-1)^{\deg(a)}a d(b)$. The degree on the generators is given by $\deg(\xi_i) = 1$ and $\deg(s_i) = 0$.

Diagrammatic presentation

Figure: The generators s_i , ξ_j of R_k are on the left, and the relations are on the right.

Figure: The differential of a crossing.

Remark

The dg algebra R_k is the higher-dimensional analogue of the LOT dg algebra. They diagrammatically differ in the following ways:

- the degree of a single crossing is zero in R_k, while it is minus one in the LOT algebra;
- the double crossing is the identity in R_k, while it is zero in the LOT algebra;
- **3** the dot generators of R_k do not exist in the LOT algebra;
- the differential of a single crossing has two terms with dots, while it has one term in the LOT algebra.