Braiding trees: A new family of Thompson-like groups

María Cumplido Cabello (Joint work with Julio Aroca)

18 February 2021

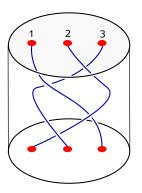
Braid theory

Thompson's groups

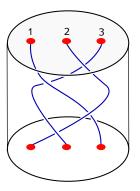
Thompson's groups

Braid theory

Braids

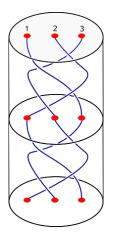


Braids

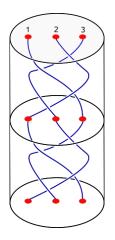


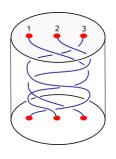
Two braids are equivalent if we can continuously deform one into the other by fixing their end points, with the condition that strands cannot touch each other.

Product of two braids

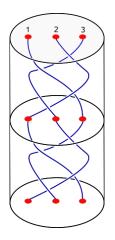


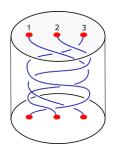
Product of two braids



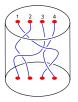


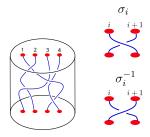
Product of two braids

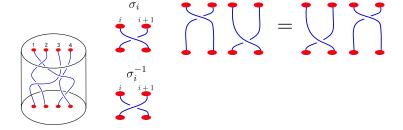


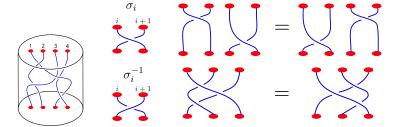


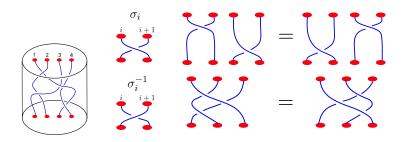
The set of equivalence classes of braids with n strands together with this product is a group, B_n .



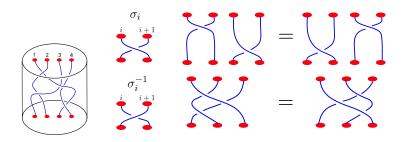








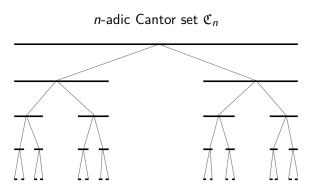
$$\mathcal{B}_n = \left\langle \sigma_1, \dots, \sigma_{n-1} \middle| \begin{array}{ll} \sigma_i \sigma_j = \sigma_j \sigma_i, & |i-j| > 1 \\ \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}, & i = 1, \dots, n-2 \end{array} \right\rangle$$

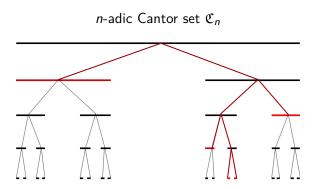


$$\mathcal{B}_n = \left\langle \sigma_1, \dots, \sigma_{n-1} \middle| \begin{array}{ll} \sigma_i \sigma_j = \sigma_j \sigma_i, & |i-j| > 1 \\ \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}, & i = 1, \dots, n-2 \end{array} \right\rangle$$

n-adic Cantor set \mathfrak{C}_n

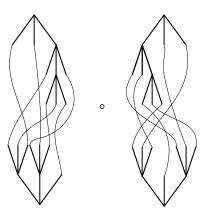
n -adic Cantor set \mathfrak{C}_n			

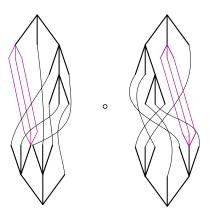




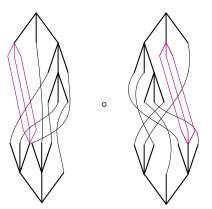
Covers of $\mathfrak{C}_n \leftrightarrow \text{rooted}$ subtrees of the infinite *n*-regular tree

The elements of the group V_n are homeomorphisms between pairs of covers of \mathfrak{C}_n ,



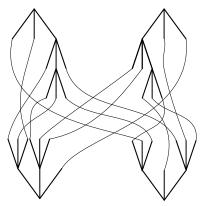


The elements of the group V_n are homeomorphisms between pairs of covers of \mathfrak{C}_n , that is, bijections between the leaves of any two full n-ary trees with the same number of leaves:

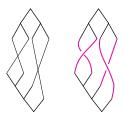


If we consider r copies of \mathfrak{C}_n and apply the same definition, we obtain the group $V_{n,r}$, which elements are bijections between the leaves of any two r-forests of full n-ary trees with the same number of leaves.

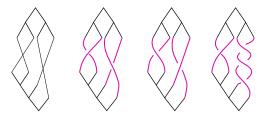
The elements of the group V_n are homeomorphisms between pairs of covers of \mathfrak{C}_n , that is, bijections between the leaves of any two full n-ary trees with the same number of leaves:



If we consider r copies of \mathfrak{C}_n and apply the same definition, we obtain the group $V_{n,r}$, which elements are bijections between the leaves of any two r-forests of full n-ary trees with the same number of leaves.



The group BV_2 is the one that we obtain when the bijections in V_2 between the leaves of two full binary trees are replace by braids:



 \bullet This group was independently introduced by Matthew Brin and Patrick Dehornoy in 2006. They both showed that BV_2 is finitely presented and gave an explicit presentation.

• Indeed, the group $BV_{n,r}$ can be defined in the same way as BV_2 .

- Indeed, the group $BV_{n,r}$ can be defined in the same way as BV_2 .
- However, the definitions and techniques used by Brin and Dehornoy are rather algebraic.

- Indeed, the group $BV_{n,r}$ can be defined in the same way as BV_2 .
- However, the definitions and techniques used by Brin and Dehornoy are rather algebraic.
 - ▶ Even though it seems plausible to apply this techniques to $BV_{n,r}$, it would be extremely tedious.

- Indeed, the group $BV_{n,r}$ can be defined in the same way as BV_2 .
- However, the definitions and techniques used by Brin and Dehornoy are rather algebraic.
 - ▶ Even though it seems plausible to apply this techniques to $BV_{n,r}$, it would be extremely tedious.
 - \triangleright Even proving that $BV_{n,r}$ is a group would be heavy!

- Indeed, the group $BV_{n,r}$ can be defined in the same way as BV_2 .
- However, the definitions and techniques used by Brin and Dehornoy are rather algebraic.
 - ▶ Even though it seems plausible to apply this techniques to $BV_{n,r}$, it would be extremely tedious.
 - \triangleright Even proving that $BV_{n,r}$ is a group would be heavy!
- Luckily, in the last decade, new combinatorial and topological methods have been introduced.

- Indeed, the group $BV_{n,r}$ can be defined in the same way as BV_2 .
- However, the definitions and techniques used by Brin and Dehornoy are rather algebraic.
 - ▶ Even though it seems plausible to apply this techniques to $BV_{n,r}$, it would be extremely tedious.
 - ▶ Even proving that $BV_{n,r}$ is a group would be heavy!
- Luckily, in the last decade, new combinatorial and topological methods have been introduced.
 - ▶ In our paper, we generalise BV_2 to a much larger family of groups $BV_{n,r}(H), H \leq \mathcal{B}_n$ and we use new approaches to prove that they are groups and give a finite set of generators if H is finitely generated.

A recursive α -braid, for α in some \mathcal{B}_m , is a braid of infinite strands constructed from one strand as follows:

- 1. Split the strand in m strands and braid them as α indicates.
- 2. Repeat this process in every strand on the new braid.
- 3. Repeat to the infinity.

A recursive α -braid, for α in some \mathcal{B}_m , is a braid of infinite strands constructed from one strand as follows:

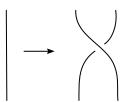
- 1. Split the strand in m strands and braid them as α indicates.
- 2. Repeat this process in every strand on the new braid.
- 3. Repeat to the infinity.

A recursive α -braid, for α in some \mathcal{B}_m , is a braid of infinite strands constructed from one strand as follows:

- 1. Split the strand in m strands and braid them as α indicates.
- 2. Repeat this process in every strand on the new braid.
- 3. Repeat to the infinity.

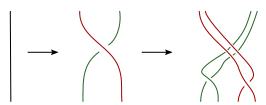
A recursive α -braid, for α in some \mathcal{B}_m , is a braid of infinite strands constructed from one strand as follows:

- 1. Split the strand in m strands and braid them as α indicates.
- 2. Repeat this process in every strand on the new braid.
- 3. Repeat to the infinity.



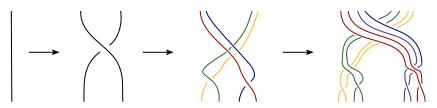
A recursive α -braid, for α in some \mathcal{B}_m , is a braid of infinite strands constructed from one strand as follows:

- 1. Split the strand in m strands and braid them as α indicates.
- 2. Repeat this process in every strand on the new braid.
- 3. Repeat to the infinity.



A recursive α -braid, for α in some \mathcal{B}_m , is a braid of infinite strands constructed from one strand as follows:

- 1. Split the strand in m strands and braid them as α indicates.
- 2. Repeat this process in every strand on the new braid.
- 3. Repeat to the infinity.



Definition [Aroca & C. 2020]

Given H a subgroup of the braid group on n strands, we define $BV_{n,r}(H)$ as the group $BV_{n,r}$ with recursive α braids, $\alpha \in H$, between covers of \mathfrak{C}_n .

Definition [Aroca & C. 2020]

Given H a subgroup of the braid group on n strands, we define $BV_{n,r}(H)$ as the group $BV_{n,r}$ with recursive α braids, $\alpha \in H$, between covers of \mathfrak{C}_n .

• In the diagram with trees joined by a braid, the recursive braids are represented by white vertices labelled with braids in *H*.

Definition [Aroca & C. 2020]

Given H a subgroup of the braid group on n strands, we define $BV_{n,r}(H)$ as the group $BV_{n,r}$ with recursive α braids, $\alpha \in H$, between covers of \mathfrak{C}_n .

• In the diagram with trees joined by a braid, the recursive braids are represented by white vertices labelled with braids in *H*.

Why does this make sense?

Definition [Aroca & C. 2020]

Given H a subgroup of the braid group on n strands, we define $BV_{n,r}(H)$ as the group $BV_{n,r}$ with recursive α braids, $\alpha \in H$, between covers of \mathfrak{C}_n .

• In the diagram with trees joined by a braid, the recursive braids are represented by white vertices labelled with braids in *H*.

Why does this make sense?

Definition [Aroca & C. 2020]

Given H a subgroup of the braid group on n strands, we define $BV_{n,r}(H)$ as the group $BV_{n,r}$ with recursive α braids, $\alpha \in H$, between covers of \mathfrak{C}_n .

• In the diagram with trees joined by a braid, the recursive braids are represented by white vertices labelled with braids in *H*.

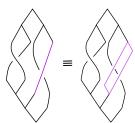
Why does this make sense?

Definition [Aroca & C. 2020]

Given H a subgroup of the braid group on n strands, we define $BV_{n,r}(H)$ as the group $BV_{n,r}$ with recursive α braids, $\alpha \in H$, between covers of \mathfrak{C}_n .

• In the diagram with trees joined by a braid, the recursive braids are represented by white vertices labelled with braids in *H*.

Why does this make sense?

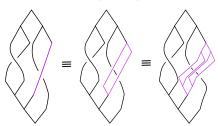


Definition [Aroca & C. 2020]

Given H a subgroup of the braid group on n strands, we define $BV_{n,r}(H)$ as the group $BV_{n,r}$ with recursive α braids, $\alpha \in H$, between covers of \mathfrak{C}_n .

• In the diagram with trees joined by a braid, the recursive braids are represented by white vertices labelled with braids in *H*.

Why does this make sense?



Definition [Aroca & C. 2020]

Given H a subgroup of the braid group on n strands, we define $BV_{n,r}(H)$ as the group $BV_{n,r}$ with recursive α braids, $\alpha \in H$, between covers of \mathfrak{C}_n .

• In the diagram with trees joined by a braid, the recursive braids are represented by white vertices labelled with braids in *H*.

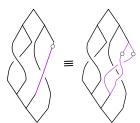
Why does this make sense?

Definition [Aroca & C. 2020]

Given H a subgroup of the braid group on n strands, we define $BV_{n,r}(H)$ as the group $BV_{n,r}$ with recursive α braids, $\alpha \in H$, between covers of \mathfrak{C}_n .

• In the diagram with trees joined by a braid, the recursive braids are represented by white vertices labelled with braids in *H*.

Why does this make sense?

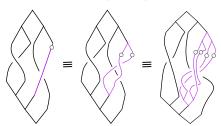


Definition [Aroca & C. 2020]

Given H a subgroup of the braid group on n strands, we define $BV_{n,r}(H)$ as the group $BV_{n,r}$ with recursive α braids, $\alpha \in H$, between covers of \mathfrak{C}_n .

• In the diagram with trees joined by a braid, the recursive braids are represented by white vertices labelled with braids in *H*.

Why does this make sense?



Theorem [Aroca & C. 2020] $BV_{n,r}(H)$ is a group.

Theorem [Aroca & C. 2020] $BV_{n,r}(H)$ is a group.

Idea of the proof.

Theorem [Aroca & C. 2020] $BV_{n,r}(H)$ is a group.

Idea of the proof.

Inspired by [Newman '42], [Belk & Matucci '14] and [Aroca '18]

1. We define braided diagrams (\supset (tree, braid, tree)-diagrams).

Theorem [Aroca & C. 2020] $BV_{n,r}(H)$ is a group.

Idea of the proof.

- 1. We define braided diagrams (\supset (tree, braid, tree)-diagrams).
- 2. We describe a series of moves that states when two braided diagrams are equivalent.

Theorem [Aroca & C. 2020] $BV_{n,r}(H)$ is a group.

Idea of the proof.

- 1. We define braided diagrams (\supset (tree, braid, tree)-diagrams).
- 2. We describe a series of moves that states when two braided diagrams are equivalent.
- 3. We show that a braided diagram is equivalent to a unique "minimal" braided diagram.

Theorem [Aroca & C. 2020] $BV_{n,r}(H)$ is a group.

Idea of the proof.

- 1. We define braided diagrams (\supset (tree, braid, tree)-diagrams).
- 2. We describe a series of moves that states when two braided diagrams are equivalent.
- 3. We show that a braided diagram is equivalent to a unique "minimal" braided diagram.
- 4. There is a bijection between classes of equivalent braided diagrams and the elements of $BV_{n,r}(H)$.

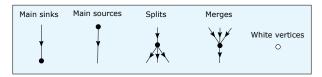
Theorem [Aroca & C. 2020] $BV_{n,r}(H)$ is a group.

Idea of the proof.

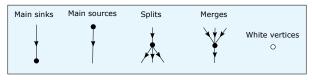
- 1. We define braided diagrams (\supset (tree, braid, tree)-diagrams).
- 2. We describe a series of moves that states when two braided diagrams are equivalent.
- 3. We show that a braided diagram is equivalent to a unique "minimal" braided diagram.
- 4. There is a bijection between classes of equivalent braided diagrams and the elements of $BV_{n,r}(H)$.
- 5. The composition of diagrams provides a group structure.

A braided diagram is a (good) planar projection of a directed graph

A braided diagram is a (good) planar projection of a directed graph that only contains the following types of vertices:

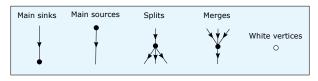


A braided diagram is a (good) planar projection of a directed graph that only contains the following types of vertices:



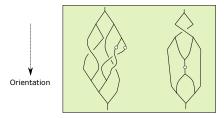
and does not contain oriented loops:

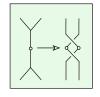
A braided diagram is a (good) planar projection of a directed graph that only contains the following types of vertices:

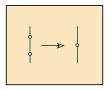


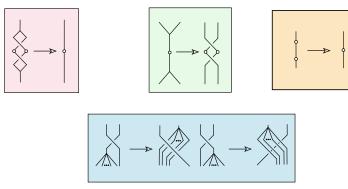
and does not contain oriented loops:

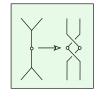
Examples:

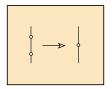


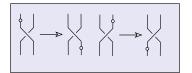


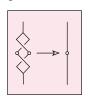


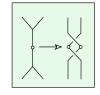


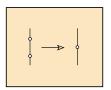


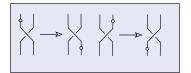


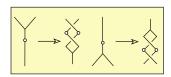












A braided diagram is reduced if no moves can be performed on it.

A braided diagram is reduced if no moves can be performed on it.

Lemma [Aroca & C. 2020]

Every braided diagram is equivalent to a unique reduced braided diagram.

A braided diagram is reduced if no moves can be performed on it.

Lemma [Aroca & C. 2020]

Every braided diagram is equivalent to a unique reduced braided diagram.

A braided diagram is reduced if no moves can be performed on it.

Lemma [Aroca & C. 2020]

Every braided diagram is equivalent to a unique reduced braided diagram.

Idea of the proof:

▶ We construct a directed graph (rewriting system) as follows:

A braided diagram is reduced if no moves can be performed on it.

Lemma [Aroca & C. 2020]

Every braided diagram is equivalent to a unique reduced braided diagram.

- We construct a directed graph (rewriting system) as follows:
 - ▶ The set of vertices is the set of braided diagrams.

A braided diagram is reduced if no moves can be performed on it.

Lemma [Aroca & C. 2020]

Every braided diagram is equivalent to a unique reduced braided diagram.

- We construct a directed graph (rewriting system) as follows:
 - ► The set of vertices is the set of braided diagrams.
 - There is an edge from a braided diagram D to another D' if D' can be obtained from the by performing a move in D.

A braided diagram is reduced if no moves can be performed on it.

Lemma [Aroca & C. 2020]

Every braided diagram is equivalent to a unique reduced braided diagram.

- We construct a directed graph (rewriting system) as follows:
 - ► The set of vertices is the set of braided diagrams.
 - ▶ There is an edge from a braided diagram D to another D' if D' can be obtained from the by performing a move in D.
- ▶ We prove that the rewriting system satisfies the following properties:

A braided diagram is reduced if no moves can be performed on it.

Lemma [Aroca & C. 2020]

Every braided diagram is equivalent to a unique reduced braided diagram.

- We construct a directed graph (rewriting system) as follows:
 - ► The set of vertices is the set of braided diagrams.
 - ▶ There is an edge from a braided diagram D to another D' if D' can be obtained from the by performing a move in D.
- ▶ We prove that the rewriting system satisfies the following properties:
 - It is terminating: every oriented path is finite.

A braided diagram is reduced if no moves can be performed on it.

Lemma [Aroca & C. 2020]

Every braided diagram is equivalent to a unique reduced braided diagram.

- We construct a directed graph (rewriting system) as follows:
 - ► The set of vertices is the set of braided diagrams.
 - There is an edge from a braided diagram D to another D' if D' can be obtained from the by performing a move in D.
- ▶ We prove that the rewriting system satisfies the following properties:
 - It is terminating: every oriented path is finite.
 - It is locally confluent: If D_1 and D_2 are reductions of a diagram D, then there exists D' which is a reduction of both D_1 and D_2 .

Lemma [Aroca & C. 2020]

There is a bijection between classes of equivalent braided diagrams and classes of equivalent elements of $BV_{n,r}(H)$.

Lemma [Aroca & C. 2020]

There is a bijection between classes of equivalent braided diagrams and classes of equivalent elements of $BV_{n,r}(H)$.

Lemma [Aroca & C. 2020]

There is a bijection between classes of equivalent braided diagrams and classes of equivalent elements of $BV_{n,r}(H)$.

Idea of the proof.

• Elements of $BV_{n,r}(H)$ are represented by reduced braided diagrams.

Lemma [Aroca & C. 2020]

There is a bijection between classes of equivalent braided diagrams and classes of equivalent elements of $BV_{n,r}(H)$.

Idea of the proof.

• Elements of $BV_{n,r}(H)$ are represented by reduced braided diagrams.

(We can not perform any move once we have pushed all white vertices to the bottom tree).

Lemma [Aroca & C. 2020]

There is a bijection between classes of equivalent braided diagrams and classes of equivalent elements of $BV_{n,r}(H)$.

Idea of the proof.

• Elements of $BV_{n,r}(H)$ are represented by reduced braided diagrams.

(We can not perform any move once we have pushed all white vertices to the bottom tree).

• Reduced braided diagrams are diagrams (tree, braid, tree) with all the vertices lying on the leaves of the bottom tree.

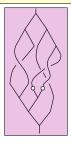
Lemma [Aroca & C. 2020]

There is a bijection between classes of equivalent braided diagrams and classes of equivalent elements of $BV_{n,r}(H)$.

Idea of the proof.

• Elements of $BV_{n,r}(H)$ are represented by reduced braided diagrams.

(We can not perform any move once we have pushed all white vertices to the bottom tree).



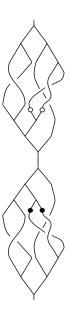
• Reduced braided diagrams are diagrams (tree, braid, tree) with all the vertices lying on the leaves of the bottom tree.

(We study the oriented path in a reduced diagram from a main source to a main sink).

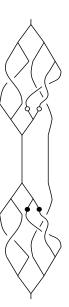
► The classes of braided diagrams with the diagram composition have a group structure.

- ► The classes of braided diagrams with the diagram composition have a group structure.
- ▶ The previous bijection is a group homomorphism.

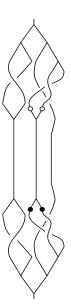
- ► The classes of braided diagrams with the diagram composition have a group structure.
- ▶ The previous bijection is a group homomorphism.



- ► The classes of braided diagrams with the diagram composition have a group structure.
- ▶ The previous bijection is a group homomorphism.

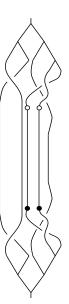


- ► The classes of braided diagrams with the diagram composition have a group structure.
- ▶ The previous bijection is a group homomorphism.

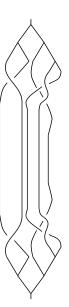


- ► The classes of braided diagrams with the diagram composition have a group structure.
- ▶ The previous bijection is a group homomorphism.

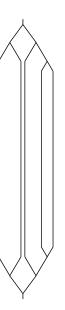
- ► The classes of braided diagrams with the diagram composition have a group structure.
- ▶ The previous bijection is a group homomorphism.



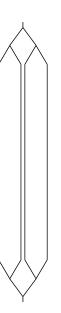
- ► The classes of braided diagrams with the diagram composition have a group structure.
- ▶ The previous bijection is a group homomorphism.



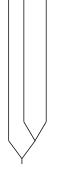
- ► The classes of braided diagrams with the diagram composition have a group structure.
- ▶ The previous bijection is a group homomorphism.



- ► The classes of braided diagrams with the diagram composition have a group structure.
- ▶ The previous bijection is a group homomorphism.



- ► The classes of braided diagrams with the diagram composition have a group structure.
- ▶ The previous bijection is a group homomorphism.



- The classes of braided diagrams with the diagram composition have a group structure.
- ▶ The previous bijection is a group homomorphism.

- ► The classes of braided diagrams with the diagram composition have a group structure.
- ▶ The previous bijection is a group homomorphism.

Theorem [Aroca & C. 2020]

 $BV_{n,r}(H)$ is finitely generated if H is finitely generated.

Theorem [Aroca & C. 2020] $BV_{n,r}(H)$ is finitely generated if H is finitely generated.

We take the strategy that Higman used in 1974 to prove that V_n is finitely generated and modify it to include braids and white vertices.

Theorem [Aroca & C. 2020]

 $BV_{n,r}(H)$ is finitely generated if H is finitely generated.

We take the strategy that Higman used in 1974 to prove that V_n is finitely generated and modify it to include braids and white vertices.

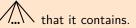
The depth of a full n-ary tree is the number of $\frac{1}{n}$ that it contains.

Theorem [Aroca & C. 2020]

 $BV_{n,r}(H)$ is finitely generated if H is finitely generated.

We take the strategy that Higman used in 1974 to prove that V_n is finitely generated and modify it to include braids and white vertices.

The depth of a full *n*-ary tree is the number of / that it contains.



The depth of an element in $BV_{n,r}(H)$ is the depth of the trees of it reduced braided diagram.

Theorem [Aroca & C. 2020]

 $BV_{n,r}(H)$ is finitely generated if H is finitely generated.

We take the strategy that Higman used in 1974 to prove that V_n is finitely generated and modify it to include braids and white vertices.

The depth of a full *n*-ary tree is the number of /... that it contains.

The depth of an element in $BV_{n,r}(H)$ is the depth of the trees of it reduced braided diagram.

What Higman proves for V_n is that one can decompose an element of depth $d \ge 3$ using elements of depth < d. We do a similar thing for our groups.

Theorem [Aroca & C. 2020]

 $BV_{n,r}(H)$ is finitely generated if H is finitely generated.

We take the strategy that Higman used in 1974 to prove that V_n is finitely generated and modify it to include braids and white vertices.

The depth of a full *n*-ary tree is the number of /... that it contains.

The depth of an element in $BV_{n,r}(H)$ is the depth of the trees of it reduced braided diagram.

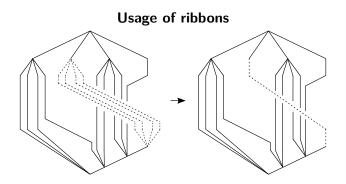
What Higman proves for V_n is that one can decompose an element of depth $d \ge 3$ using elements of depth < d. We do a similar thing for our groups.

Proposition [Aroca & C. 2020]

Every element of $BV_{n,r}(H)$ of depth d>4 can be expressed as the product of elements in $BV_{n,r}(\mathcal{B}_n)$ of depth d>4 (in $BV_{n,r}(H)$ if d=4 is f. g.).

Proposition [Aroca & C. 2020]

Every element of $BV_{n,r}(H)$ of depth d > 4 can be expressed as the product of elements in $BV_{n,r}(\mathcal{B}_n)$ of depth < d (in $BV_{n,r}(H)$ if H is f. g.).

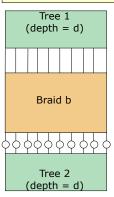


Proposition [Aroca & C. 2020]

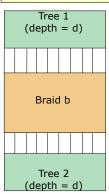
Every element of $BV_n(H)$ of depth d>4 can be expressed as the product of elements in $BV_n(\mathcal{B}_n)$ of depth < d (in $BV_{n,r}(H)$ if H is f. generated).

Proposition [Aroca & C. 2020]

Every element of $BV_n(H)$ of depth d>4 can be expressed as the product of elements in $BV_n(\mathcal{B}_n)$ of depth < d (in $BV_{n,r}(H)$ if H is f. generated).

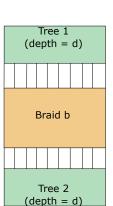


Proposition [Aroca & C. 2020]



Proposition [Aroca & C. 2020]

Every element of $BV_n(H)$ of depth d > 4 can be expressed as the product of elements in $BV_n(\mathcal{B}_n)$ of depth < d (in $BV_{n,r}(H)$ if H is f. generated).



Tree 3 (depth =d)

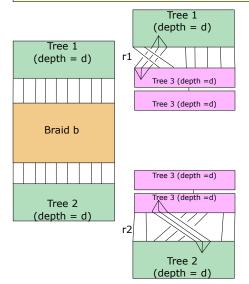
Tree 3 (depth =d)

Tree 3 (depth =d)

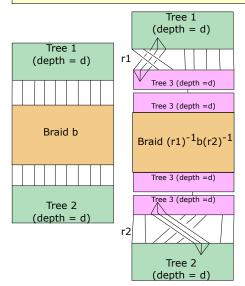
Tree 3 (depth =d)

Tree 2 (depth = d)

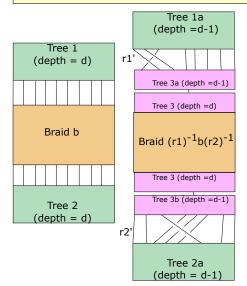
Proposition [Aroca & C. 2020]



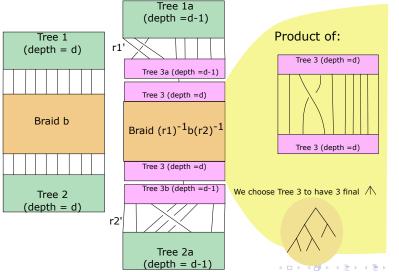
Proposition [Aroca & C. 2020]



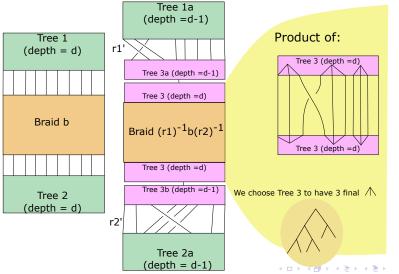
Proposition [Aroca & C. 2020]



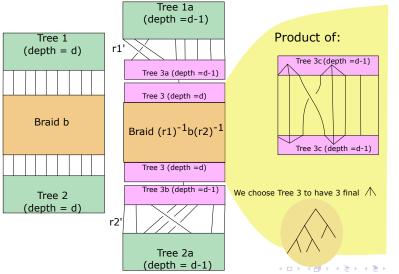
Proposition [Aroca & C. 2020]



Proposition [Aroca & C. 2020]

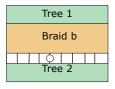


Proposition [Aroca & C. 2020]

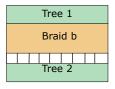


Proposition [Aroca & C. 2020]

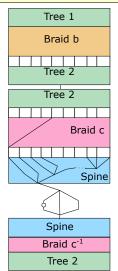
Proposition [Aroca & C. 2020]



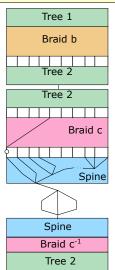
Proposition [Aroca & C. 2020]



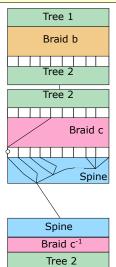
Proposition [Aroca & C. 2020]



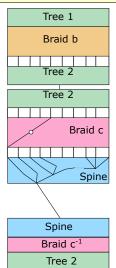
Proposition [Aroca & C. 2020]



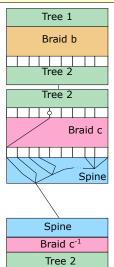
Proposition [Aroca & C. 2020]



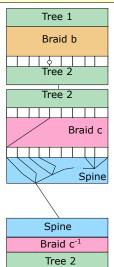
Proposition [Aroca & C. 2020]



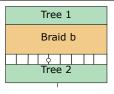
Proposition [Aroca & C. 2020]



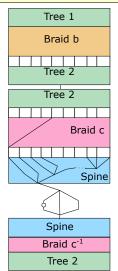
Proposition [Aroca & C. 2020]



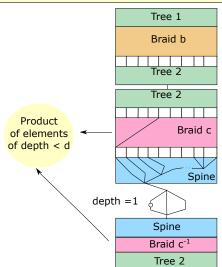
Proposition [Aroca & C. 2020]



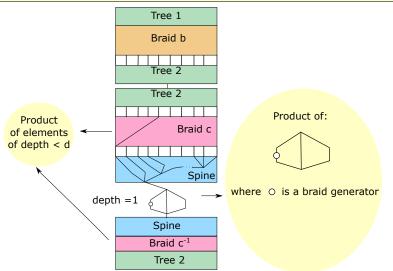
Proposition [Aroca & C. 2020]



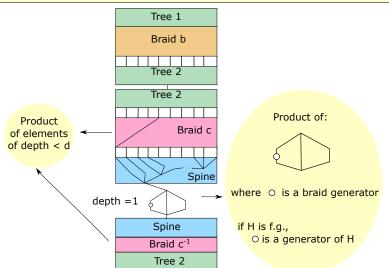
Proposition [Aroca & C. 2020]

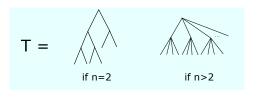


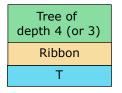
Proposition [Aroca & C. 2020]

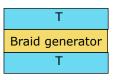


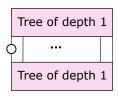
Proposition [Aroca & C. 2020]

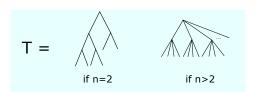






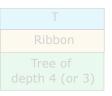


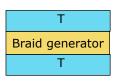


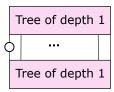


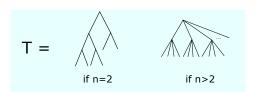
Tree of depth 4 (or 3)

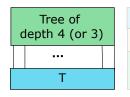
Ribbon

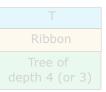


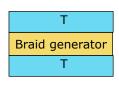


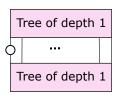


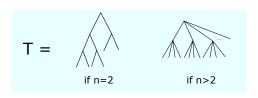


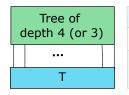


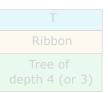


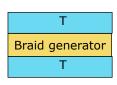


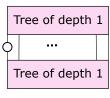




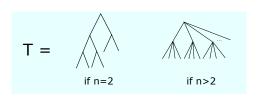


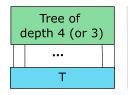


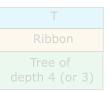


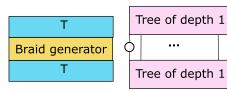


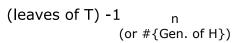
n (or #{Gen. of H})

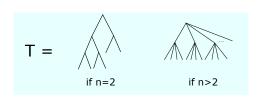


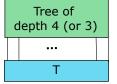


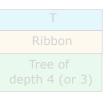


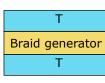


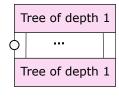








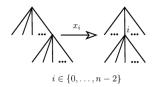


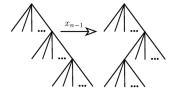


(leaves of T) -1 n (or #{Gen. of H})

Reducing the set of generators

Thanks to [Brown, 1987] we know that these generators can be expressed as the product of the following n elements:





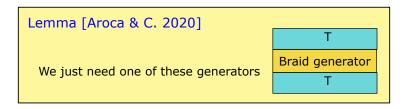
Lemma [Aroca & C. 2020]

We just need one of these generators

T

Braid generator

T



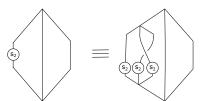
The proof is based in two ideas:

Lemma [Aroca & C. 2020]

We just need one of these generators

Braid generator

The proof is based in two ideas:

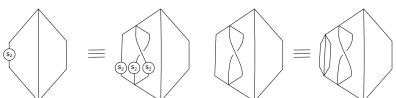


Lemma [Aroca & C. 2020]

We just need one of these generators

T
Braid generator
T

The proof is based in two ideas:



Set of generators (when H is finitely generated)

Theorem [Aroca & C. 2020]

- $BV_n(\mathcal{B}_n)$ is generated by at most 2n+1 known elements.
- $BV_n(H)$ is generated by at most $n + |\{\text{gen. of } H\}| + (\text{leaves of } T) 1$ known elements (if the gen. of H are known).
- \bullet If H is a parabolic subgroup, we can further reduce the set of generators.

Set of generators (when H is finitely generated)

Theorem [Aroca & C. 2020]

- $BV_n(\mathcal{B}_n)$ is generated by at most 2n+1 known elements.
- $BV_n(H)$ is generated by at most $n + |\{\text{gen. of } H\}| + (\text{leaves of } T) 1$ known elements (if the gen. of H are known).
- If *H* is a parabolic subgroup, we can further reduce the set of generators.

Generators for $BV_3(\mathcal{B}_3)$:

Set of generators (when H is finitely generated)

Theorem [Aroca & C. 2020]

- $BV_n(\mathcal{B}_n)$ is generated by at most 2n+1 known elements.
- $BV_n(H)$ is generated by at most $n + |\{\text{gen. of } H\}| + (\text{leaves of } T) 1$ known elements (if the gen. of H are known).
- If *H* is a parabolic subgroup, we can further reduce the set of generators.

Generators for $BV_3(\mathcal{B}_3)$:

Finally, the proof can be easily adapted for $BV_{n,r}(H)$.

Thank you!