Almost equivalence for Anosov flows

Knot Online Seminar 2020 April 2nd

OVERVIEW

Question (Fried 1982)

Does every transitive Anosov flow admit a finite collection of periodic orbits that form a genus-one fibered link?

Question (Ghys 80's)

Given any two transitive Anosov flows, do they differ by a finite number of Dehn surgeries along periodic orbits?

- 1. Anosov flows
- 2. Birkhoff sections, Dehn surgeries, and almost equivalence
- 3. Equivalence of both questions (Minakawa, unpublished)
- 4. Positive answer for algebraic An. flows (D-Shannon, 2019)
- 5. Toward a positive answer for all Anosov flows (D, work in progress)

ANOSOV DIFFEOMORPHISM

$$A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \text{ acting on } \mathbb{R}^2 / \mathbb{Z}^2$$

Definition

$$\begin{split} f &: M \to M \text{ is Anosov if } \exists (\mathcal{F}^s, \mu^s), \\ (\mathcal{F}^u, \mu^u) \text{ transverse } f\text{-invariant} \\ measured \text{ foliations and } \exists \lambda > 0 \text{ such} \\ that & f^*\mu^s = \lambda^{-1}\mu^s \text{ and } f^*\mu^u = \lambda\mu^u. \end{split}$$

ANOSOV FLOW: EXAMPLE 1 - SUSPENSION

$$M = \mathbb{T}^2 \times [0,1]/_{(p,1)\sim (A(p),0)}$$

=: M_A mapping torus

$$\begin{array}{l} X = \frac{\partial}{\partial z} \\ \varphi^t_{\mathrm{sus}}((p,z)) = (p,z+t) \end{array}$$

Definition

 φ^t is topologically Anosov if \exists invariant 2-foliations $\mathcal{F}^s/\mathcal{F}^u$ tangent to φ^t that are exponentially contracted when $t \to +\infty/-\infty$.

ANOSOV FLOW: EXAMPLE 2 - GEODESIC FLOW

$$\begin{split} \boldsymbol{\Sigma} \text{ Riemannian surface} \\ \boldsymbol{M} &= \mathbf{T}^{1}\boldsymbol{\Sigma} = \{(\boldsymbol{p}, \boldsymbol{v}) \mid \boldsymbol{v} \in \mathbf{T}\boldsymbol{\Sigma}, ||\boldsymbol{v}|| = 1\} \\ \boldsymbol{\varphi}_{\text{geod}}^{t}((\boldsymbol{\gamma}(0), \dot{\boldsymbol{\gamma}}(0))) &= (\boldsymbol{\gamma}(t), \dot{\boldsymbol{\gamma}}(t)) \end{split}$$

 Σ hyperbolic $\implies \varphi_{\text{geod}}^t$ Anosov

in dim \geq 4, few other examples (see Barthelmé's lecture notes) in dimension 3

- surgery constructions:
 - Handel-Thurston 1980
 - Dehn-Goodman-Fried 1983

Dehn surgery on a periodic orbit

Lego constructions: Béguin-Bonatti-Yu 2017

DEHN-GOODMAN-FRIED SURGERY

If the new meridian cuts the stable/unstable directions twice, the obtained 1-foliation is topologically Anosov.

EXISTENCE OF MARKOV PARTITIONS

admissible words $\mathcal{L}_T \subseteq \{a, b, c, d, e\}^{\mathbb{Z}}$ semi-conjugacy $(\mathcal{L}_T, \sigma) \to (\mathbb{T}^2, \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix})$ periodic admissible words \to periodic orbits of $\begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$

Theorem (Ratner 1968)

Anosov flows in dimension 3 admit Markov finite partitions.

GLOBAL SECTIONS

Definition *Global section for* (M, φ) : *compact surface S with no boundary such that*

- 1. S is embedded in M,
- 2. *S* is transverse to $X := \frac{d}{dt}(\varphi^t)|_{t=0}$ ($\iff S \pitchfork X \iff T_p M = T_p S \oplus \langle X(p) \rangle$),
- 3. *S* cuts all orbits in bounded time $(\iff \exists T > 0, \varphi^{[0,T]}(S) = M).$

 $f: S \rightarrow S$ first-return map up to reparametrization

$$\begin{array}{rcl} (M,\varphi) &\simeq & (S \times [0,1],\varphi_{\mathrm{sus}})/_{(x,1) \sim (f(x),0)} \\ &= & (M_f,\varphi_{\mathrm{sus}}) \end{array}$$

BIRKHOFF SECTION

Definition *Birkhoff section for* (M, φ) : *compact surface S with boundary such that*

1. $\operatorname{int} S$ is embedded in M,

- 2. int *S* is transverse to $X := \frac{d}{dt}(\varphi^t)|_{t=0}$ $(\iff \operatorname{int}(S) \pitchfork X$ $\iff T_pM = T_pS \oplus \langle X(p) \rangle \text{ si } p \in \operatorname{int}(S)),$
- 3. ∂S is a finite collection fo periodic orbits of $\varphi^t \iff \partial S /\!\!/ X$),
- 4. S cuts all orbits in bounded time $(\iff \exists T > 0, \varphi^{[0,T]}(S) = M).$

Up to reparametrization

- $(M \setminus \partial S, \varphi) \simeq (\operatorname{int}(S) \times [0, 1], \varphi_{\operatorname{sus}})/_{(x, 1) \sim (f(x), 0)}$
- \rightarrow open book decomposition of M
- \rightarrow Dehn-Goodman-Fried surgery on ∂S (with appropriate coefficients) yields $(M_{\!f},\varphi_{\rm sus})$

BIRKHOFF SECTIONS AND ALMOST EQUIVALENCE

S Bikhoff section for (M, X) with first-return map f \rightarrow Goodman-Fried surgery on ∂S yields (M_f, φ_{sus})

Definition

 $(M_1, \varphi_1), (M_2, \varphi_2)$ are almost-equivalent if $\exists \gamma_1, \ldots, \gamma_n$ periodic orbits of $\varphi_1, r_1, \ldots, r_n \in \mathbb{Q}$ s. t. Dehn-Goodman-Fried surgery on $((\gamma_1, r_1), \ldots, (\gamma_n, r_n))$ yields (M_2, φ_2) .

S Birkhoff section for (M, φ) with first-return map $f : S \to S \to (M, \varphi)$ almost-equivalent to (M_f, φ_{sus}) .

BIRKHOFF SECTION: EXAMPLE 1 - HOPF FLOW ON \mathbb{S}^3

Birkhoff section: example 2 - geodesic flow on $T^1 S^2$ with positive curvature (Poincaré-Birkhoff)

BIRKHOFF SECTION: EXAMPLE 3 - GEODESIC FLOW ON A HYPERBOLIC SURFACE (BIRKHOFF-FRIED)

FRIED'S THEOREM

Theorem (Fried 1982)

Every transitive Anosov flow admits a Birkhoff section.

Corollary

Every transitive Anosov flow is almost-equivalent to the suspension flow of some pseudo-Anosov homeomorphism of some surface.

Question (Fried)

Does every transitive Anosov flow admit a genus-one Birkhoff section?

Question (Ghys)

Are all transitive Anosov flows pairwise almost-equivalent?

RESULTS

Theorem (Minakawa 2013?) $\forall A \in SL_2(\mathbb{Z}), tr(A) \ge 3, (M_A, \varphi_{sus}) \stackrel{a.e.}{\longleftrightarrow} (M_{\begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}}, \varphi_{sus}).$

Corollary

All transitive Anosov flows (with orientable foliations) admitting a genus-one Birkhoff section are almost-equivalent.

Theorem (Dehornoy-Shannon 2019)

For every hyperbolic 2-orbifold Σ , $(T^1\Sigma, \varphi_{geod})$ admits a genus-one Birkhoff section.

Theorem (Dehornoy 2020)

If a transitive Anosov flow (w. orient. foliations) admits a **genus-two** *Birkhoff section, then it admits a* **genus-one** *Birkhoff section.*

FRIED SUM OF TRANSVERSE SURFACES

 S_1, S_2 transverse to X, $S_1 \cup S_2 := S_1 \cup S_2$ desingularized transversally to the flow

Lemma

$$\chi((S_1 \overset{F}{\cup} S_2)^\circ) = \chi(S_1^\circ) + \chi(S_2^\circ)$$

FRIED'S PANTS

- (M,φ) transitive Anosov flow
- R_1, \ldots, R_k Markov partition

periodic orbits \leftrightarrow admissible periodic words $\subseteq \{1, \ldots, k\}^{\mathbb{Z}}$

 $(aw_1)^{\mathbb{Z}}, (aw_2)^{\mathbb{Z}}$ periodic admissible words $\implies (aw_1aw_2)^{\mathbb{Z}}$ periodic admissible

FRIED'S THEOREM

Theorem (Fried)

Every (M, φ) 3-dim transitive Anosov flow admits a Birkhoff section **Proof**.

- ▶ Ratner: \exists finite Markov partition R_1, \ldots, R_k
- ▶ ∀ periodic point *x* in the interior of some *R_i*, ∃*P_x* Fried pair of pants containing *x* in the interior Actually one can prescribe the periodic orbits on the boundary of the rectangles

 $\implies \exists \mathcal{P}_x \text{ trough all points of } M$

- Compactness of $M \implies$ finite union $\cup_x \mathcal{P}_x$ intersects all orbits
- The Fried sum $\mathcal{P}_{x_1} \overset{F}{\cup} \dots \overset{F}{\cup} \mathcal{P}_{x_n}$ is a Birkhoff section.

MINAKAWA'S THEOREM

Theorem (Minakawa) $\forall A \in \mathrm{SL}_2(\mathbb{Z}), \mathrm{tr}(A) \geq 3, (M_A, \varphi_{\mathrm{sus}}) \xleftarrow{a.e.} (M_{(\begin{smallmatrix} 2 & 1\\ 1 & 1 \end{smallmatrix})}, \varphi_{\mathrm{sus}}).$

Proof.

Find a nice pair of pants

Take the Fried sum $(\mathbb{T}^2 \times \{2/3\}) \overset{F}{\cup} \mathcal{P}$.

$$\begin{array}{rcl} \chi((\mathbb{T}^2 \times \{2/3\})^\circ) &=& -3 \\ \chi(\mathcal{P}^\circ) &=& -1 \end{array}$$

$$\chi((\mathbb{T}^2 \times \{2/3\}) \overset{F}{\cup} \mathcal{P})^\circ) = -4$$

first-return map has less fixed points

(actually if $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} B$ with *B* positive, first-return = *B*).

BIRKHOFF SECTIONS FOR GEODESIC FLOWS

Theorem (Dehornoy-Shannon)

For every hyperbolic 2-orbifold Σ , $(T^1\Sigma, \varphi_{geod})$ admits a genus-one Birkhoff section.

Theorem (Dehornoy)

If (M, φ) is a transitive Anosov flow with orientable invariant foliations and with a genus-2 Birkhoff section 2, then it admits a genus-1 Birkhoff section.

Thanks to Minakawa, it is almost equivalent to $(M_{(\begin{smallmatrix} 2 & 1\\ 1 & 1 \end{smallmatrix})}, \varphi_{sus})$.