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Statement of the results

Framework

@ V, is a handlebody of genus g.

@ The boundary 0Vj is identified with ¥z o 3, ;.

e Ag 1 = mapping class group of V.

o Ag1 imbeds in Mg 1 (the imbedding depends on the
identification 0V ~ ¥,).
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Reidemeister-Singer Theorem

Any closed connected compact oriented 3-manifold can be
obtained by gluing two handlebodies together along their boundary.

Any 3-manifold can be described by specifying a homeomorphism
of some surface up to isotopy.
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Reidemeister-Singer Theorem

Fix for all g = 0, compatible Heegaard splittings of the 3-sphere:
§% = Ve U(_Vg)-
lg

For any ¢ € Mg 1, one can define

S3 = Ve [J(=Ve)
PoLg
Ag.1 = homeo extending to the “inner” handlebody V.
Bg,1 = homeo extending to the “outer” handlebody (—Vj).

There is a bijection:
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Dehn-Nielsen Theorem
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There is a faithful representation

Mg1 —L— Aut(m)
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o Let Ny be the k-th nilpotent quotient of 7 : Ny := 7/l j417.
M acts both on 7 and all its nilpotent quotients:

M —L Aut(m) —— Aut(N)
N -

@ The Johnson filtration is defined by Ji := Ker(pk). We have
M>oHoDdooD e

o Ny is simply H := Hi(X4,1), the abelianization of .

© Tz 1 := J1is the Torelli group, Kg 1 := J> is the Johnson
Kernel.

o Fundamental example: '/ Zg 1 < Ji
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Problem

What happens when one restricts the map R to the terms of the
Johnson filtration 7

@ Restriction to J; = Z; 1 v~ all ZHS. (Birman, 72)

@ Restriction to J, v still all ZHS (Morita, 89)

@ Restriction to J3 v still all ZHS ! (Pitsch, '08)

Theorem (F., 2021)

Any homology 3-sphere is in the image of the restriction of the
map R to /iTooAg,l\J4(Zg,1)/Bg71.
g%
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Statement of the results

Y« equivalence relation

o M XM <« onecan go from a Heegaard splitting of M to
a Heegaard splitting of M’ by composing the gluing map with
an element of [\ Z, .

@ The inclusions 'y 11751 < ' Zg1 < Jk D Jk41 induce the
following organization:

Yl < Y2 <~ Y3 — - Yk < Yk+1 s
[ | | | |
h = b = h = - J = Jy1 =
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Statement of the results

Results

Any homology 3-sphere is in the image of the restriction of the
map R to Iirf Ag1\Ja(Xg1)/Bg,1. Equivalently, the
g—+

Jy-equivalence is trivial among homology 3-spheres.

This is actually equivalent to

Theorem (F,2001)

There exists a homology 3-sphere which is Jy-equivalent to S3 and
has Casson invariant equal to 1.
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The Casson invariant

@ The Casson invariant A\ is an invariant of ZHS valued in Z,
defined by counting irreducible representations of the
fundamental group of the homology 3-sphere into SU(2).

@ When performing a knot surgery, its variation can be
computed from the Alexander polynomial of the knot.
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Morita's formula

o letj:Y,1— 53 be an embedding of image the standard
Heegaard surface, then we have a map ¢ — S3(j, ¢) from
Mg 1 to the set of 3-manifolds.

o If we restrict to J; = Zz 1, we get homology 3-spheres.
@ Then:

N Tg1— L
— NS, 9)).

It is not a homomorphism.
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Morita's formula

We will now restrict to K = J,. The restriction of A; to K is the
sum of two homomorphisms.

@ The core of the Casson invariant d does not depend on j.
@ The homomorphism g; o T vanishes on Js.

@ The Casson invariant induces A : J; — Z.

Quentin Faes 22 / 36
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Let us show:

‘ As) = Z ’

‘ dM e ZHS s.t. M is Js-equ

ivalent to S3 and A\(M) = 1J

Js-equivalence is trivial among ZHS3
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Proof.

Goussarov-Habiro clasper calculus imply that two homology
3-spheres are Yy-equivalent if and only if they have the same
Casson invariant.

Let P be a homology 3-sphere such that A(P) = 1. Let M be any
homology 3-sphere and set A(M) = k € Z. By additivity of the
Casson invariant we have that

NS #PF) = A(M)

thus,
M Y 3upk i 63463k _ g3

v
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Proofs

Elements of the Johnson filtration

® I 1 = Ji is generated by bounding pairs. (g > 3)

e Kg1 = Jois generated by BSCC maps (Dehn twists along
bounding simple closed curves). (g = 2)

@ No Dehn twist belong to Js.

Quentin Faes 28 / 36
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A slide with blackboxes

@ To build an element deeper, one has to multiply Dehn twists,
and check that the successive Johnson homomorphisms
Tk : Jk = Dk (H) vanish. (because Ker(7x) = Jx41).

o Problem: how can we compute (efficiently) the Johnson
homomorphisms of a product of Dehn twists 7

@ v~ A formula by Kawazumi and Kuno computes the action of
a Dehn twist on the completion of the group algebra of the
fundamental group.

@ We do so by implementing it in a SageMath computer
program.
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Building an element of J; with Casson invariant 1

@ There exists a map 73 with kernel J;, computable with
SageMath.

o We have A(¢)) =1 and ¢ € J3 but 73(¢) # 0.

o Fortunately T3(1,b) € 7’3([./2,.]1]) and )\([Jz,Jl]) = 0 by the
properties of the core of the Casson invariant d.

o Yy e [K,Z] s.t. ¢ := i)y € Ker(13) = Jg and A(p) = 1.
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@ Extending the method we used to study Js-equivalence does
not involve only the Casson invariant.

e We do not know if Ji-equivalence is always trivial, but we can
formulate the weaker conjecture: do we have A\(Jx) = Z for all
k=17 (still difficult)

@ The element ¢ € J; constructed here is not a commutator of
elements of the lower terms of the filtration. The comparison
lkZg1 < Ji is a central question.
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Thank you for listening !
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