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Theorem (F.2021)

Any homology 3-sphere admits a Heegaard splitting such that the
gluing map acts trivially on the 4-th nilpotent quotient of the
fundamental group of the gluing surface.
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When one caps the boundary with a disk, one gets a closed
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Mg ,1 is the mapping class group of the surface:
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?

Any 3-manifold can be described by specifying a homeomorphism
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Reidemeister-Singer Theorem

Fix for all g ě 0, compatible Heegaard splittings of the 3-sphere:

S3 “ Vg

ď

ιg

p´Vg q.

For any ϕ PMg ,1, one can define

S3
ϕ :“ Vg

ď

ϕ˝ιg

p´Vg q.

Ag ,1 = homeo extending to the “inner” handlebody Vg .
Bg ,1 = homeo extending to the “outer” handlebody p´Vg q.
There is a bijection:

R : lim
gÑ`8

Ag ,1zMg ,1{Bg ,1 ÝÑ Vp3q

ϕ ÞÝÑ S3
ϕ.
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Let Nk be the k-th nilpotent quotient of π : Nk :“ π{Γk`1π.
M acts both on π and all its nilpotent quotients:

M Autpπq AutpNkq
ρ

ρk

The Johnson filtration is defined by Jk :“ Kerpρkq. We have

M Ą J1 Ą J2 ¨ ¨ ¨ Ą Jk ¨ ¨ ¨

N1 is simply H :“ H1pΣg ,1q, the abelianization of π.

Ig ,1 :“ J1 is the Torelli group, Kg ,1 :“ J2 is the Johnson
Kernel.

Fundamental example: ΓkIg ,1 Ă Jk
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Problem

What happens when one restricts the map R to the terms of the
Johnson filtration ?

Restriction to J1 “ Ig ,1 ù all ZHS. (Birman, 72)

Restriction to J2 ù still all ZHS (Morita, 89)

Restriction to J3 ù still all ZHS ! (Pitsch, ’08)

Theorem (F., 2021)

Any homology 3-sphere is in the image of the restriction of the
map R to lim

gÑ`8
Ag ,1zJ4pΣg ,1q{Bg ,1.
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Reformulation in terms of equivalence relation

M
Jk
„ M 1 ðñ one can go from a Heegaard splitting of M to a

Heegaard splitting of M 1 by composing the gluing map with an
element of Jk .

Theorem (F., 2021)

Any homology 3-sphere is in the image of the restriction of the
map R to lim

gÑ`8
Ag ,1zJ4pΣg ,1q{Bg ,1. Equivalently, the

J4-equivalence is trivial among homology 3-spheres.
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Yk equivalence relation

M
Yk
„ M 1 ðñ one can go from a Heegaard splitting of M to

a Heegaard splitting of M 1 by composing the gluing map with
an element of ΓkIg ,1.

The inclusions Γk`1Ig ,1 Ă ΓkIg ,1 Ă Jk Ą Jk`1 induce the
following organization:

Y1 ðù Y2 ðù Y3 ðù ¨ ¨ ¨ Yk ðù Yk`1 ðù ¨ ¨ ¨

‖ ó ó ó ó

J1 ðù J2 ðù J3 ðù ¨ ¨ ¨ Jk ðù Jk`1 ðù ¨ ¨ ¨
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Theorem

Any homology 3-sphere is in the image of the restriction of the
map R to lim

gÑ`8
Ag ,1zJ4pΣg ,1q{Bg ,1. Equivalently, the

J4-equivalence is trivial among homology 3-spheres.

This is actually equivalent to

Theorem (F,2001)

There exists a homology 3-sphere which is J4-equivalent to S3 and
has Casson invariant equal to 1.
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The Casson invariant

The Casson invariant λ is an invariant of ZHS valued in Z,
defined by counting irreducible representations of the
fundamental group of the homology 3-sphere into SUp2q.

When performing a knot surgery, its variation can be
computed from the Alexander polynomial of the knot.
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Morita’s formula

Let j : Σg ,1 ãÑ S3 be an embedding of image the standard
Heegaard surface, then we have a map ϕ ÞÑ S3pj , ϕq from
Mg ,1 to the set of 3-manifolds.

If we restrict to J1 “ Ig ,1, we get homology 3-spheres.

Then:

λj : Ig ,1 ÝÑ Z
ϕ ÞÝÑ λpS3pj , ϕqq.

It is not a homomorphism.
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Morita’s formula

We will now restrict to K “ J2. The restriction of λj to K is the
sum of two homomorphisms.

λj |K“
´d

24
` qj ˝ τ2.

The core of the Casson invariant d does not depend on j .

The homomorphism qj ˝ τ2 vanishes on J3.

The Casson invariant induces λ : J4 Ñ Z.
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Let us show:

DM P ZHS s.t. M is J4-equivalent to S3 and λpMq “ 1

λpJ4q “ Z

J4-equivalence is trivial among ZHS3
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Proof.

Goussarov-Habiro clasper calculus imply that two homology
3-spheres are Y4-equivalent if and only if they have the same
Casson invariant.

Let P be a homology 3-sphere such that λpPq “ 1. Let M be any
homology 3-sphere and set λpMq “ k P Z. By additivity of the
Casson invariant we have that

λpS3#Pkq “ λpMq

thus,

M
Y4
„ S3#Pk J4

„ S3#S3k “ S3
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Introduction
Statement of the results

Proofs
Conclusion

Proof.

Goussarov-Habiro clasper calculus imply that two homology
3-spheres are Y4-equivalent if and only if they have the same
Casson invariant.

Let P be a homology 3-sphere such that λpPq “ 1.

Let M be any
homology 3-sphere and set λpMq “ k P Z. By additivity of the
Casson invariant we have that

λpS3#Pkq “ λpMq

thus,

M
Y4
„ S3#Pk J4

„ S3#S3k “ S3

Quentin Faes 25 / 36



Introduction
Statement of the results

Proofs
Conclusion

Proof.

Goussarov-Habiro clasper calculus imply that two homology
3-spheres are Y4-equivalent if and only if they have the same
Casson invariant.

Let P be a homology 3-sphere such that λpPq “ 1. Let M be any
homology 3-sphere and set λpMq “ k P Z.

By additivity of the
Casson invariant we have that

λpS3#Pkq “ λpMq

thus,

M
Y4
„ S3#Pk J4

„ S3#S3k “ S3

Quentin Faes 25 / 36



Introduction
Statement of the results

Proofs
Conclusion

Proof.

Goussarov-Habiro clasper calculus imply that two homology
3-spheres are Y4-equivalent if and only if they have the same
Casson invariant.

Let P be a homology 3-sphere such that λpPq “ 1. Let M be any
homology 3-sphere and set λpMq “ k P Z. By additivity of the
Casson invariant we have that

λpS3#Pkq “ λpMq

thus,

M
Y4
„ S3#Pk J4

„ S3#S3k “ S3

Quentin Faes 25 / 36



Introduction
Statement of the results

Proofs
Conclusion

Proof.

Goussarov-Habiro clasper calculus imply that two homology
3-spheres are Y4-equivalent if and only if they have the same
Casson invariant.

Let P be a homology 3-sphere such that λpPq “ 1. Let M be any
homology 3-sphere and set λpMq “ k P Z. By additivity of the
Casson invariant we have that

λpS3#Pkq “ λpMq

thus,

M
Y4
„ S3#Pk J4

„ S3#S3k “ S3

Quentin Faes 25 / 36



Introduction
Statement of the results

Proofs
Conclusion

Flowchart for  
Theorem 2

-equivalence is trivial
Habiro's clasper calculus

for -equivalence

Additivity of the  
Casson invariant

gives

gives

gives sense to
Build  

 
1.  Build  s.t.  

 as a product of BSCC maps
2. Compute  using 

infinitesimal Johnson hom.
3. Show that  can be  

perturbated  by a map  
s.t.  
and .

 Morita +  
Massuyeau-Meilhan

 Kawazumi-Kuno + 
Massuyeau

Properties of 

Quentin Faes 26 / 36



Introduction
Statement of the results

Proofs
Conclusion

Elements of the Johnson filtration

Dehn twists generate the mapping class group:

Quentin Faes 27 / 36



Introduction
Statement of the results

Proofs
Conclusion

Elements of the Johnson filtration

Ig ,1 “ J1 is generated by bounding pairs. (g ě 3)

Kg ,1 “ J2 is generated by BSCC maps (Dehn twists along
bounding simple closed curves). (g ě 2)

No Dehn twist belong to J3.

Quentin Faes 28 / 36



Introduction
Statement of the results

Proofs
Conclusion

Elements of the Johnson filtration

Ig ,1 “ J1 is generated by bounding pairs. (g ě 3)

Kg ,1 “ J2 is generated by BSCC maps (Dehn twists along
bounding simple closed curves). (g ě 2)

No Dehn twist belong to J3.

Quentin Faes 28 / 36



Introduction
Statement of the results

Proofs
Conclusion

Elements of the Johnson filtration

Ig ,1 “ J1 is generated by bounding pairs. (g ě 3)

Kg ,1 “ J2 is generated by BSCC maps (Dehn twists along
bounding simple closed curves). (g ě 2)

No Dehn twist belong to J3.

Quentin Faes 28 / 36



Introduction
Statement of the results

Proofs
Conclusion

Elements of the Johnson filtration

Ig ,1 “ J1 is generated by bounding pairs. (g ě 3)

Kg ,1 “ J2 is generated by BSCC maps (Dehn twists along
bounding simple closed curves). (g ě 2)

No Dehn twist belong to J3.

Quentin Faes 28 / 36



Introduction
Statement of the results

Proofs
Conclusion

A slide with blackboxes

To build an element deeper, one has to multiply Dehn twists,
and check that the successive Johnson homomorphisms
τk : Jk Ñ DkpHq vanish. (because Kerpτkq “ Jk`1q.

Problem: how can we compute (efficiently) the Johnson
homomorphisms of a product of Dehn twists ?

ù A formula by Kawazumi and Kuno computes the action of
a Dehn twist on the completion of the group algebra of the
fundamental group.

We do so by implementing it in a SageMath computer
program.
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T´1
1 T´1

2 T 2
3 T
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2
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Building an element of J4 with Casson invariant 1

There exists a map τ3 with kernel J4, computable with
SageMath.

We have λpψq “ 1 and ψ P J3 but τ3pψq ‰ 0.

Fortunately τ3pψq P τ3prJ2, J1sq and λprJ2, J1sq “ 0 by the
properties of the core of the Casson invariant d .

Dψ2 P rK, Is s.t. ϕ :“ ψψ2 P Kerpτ3q “ J4 and λpϕq “ 1.
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Perspectives and remarks

Extending the method we used to study J5-equivalence does
not involve only the Casson invariant.

We do not know if Jk -equivalence is always trivial, but we can
formulate the weaker conjecture: do we have λpJkq “ Z for all
k ě 1 ? (still difficult)

The element ϕ P J4 constructed here is not a commutator of
elements of the lower terms of the filtration.

The comparison
ΓkIg ,1 Ă Jk is a central question.
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