Triviality of the J₄-equivalence relation among homology 3-spheres

Quentin Faes

Institut de Mathématiques de Bourgogne

7/04/2022

2 Statement of the results

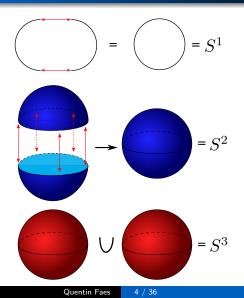
Table of Contents

2 Statement of the results

Introduction

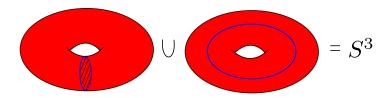
Statement of the results Proofs Conclusion

Gluing

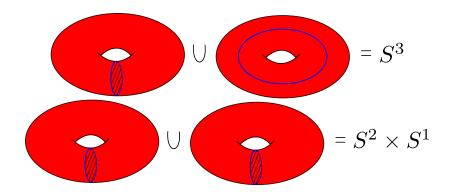


Introduction atement of the results Proofs

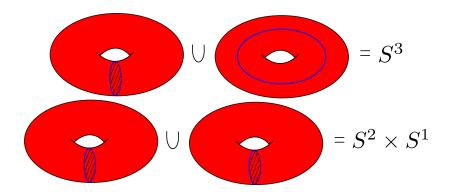
Heegaard splittings



Heegaard splittings

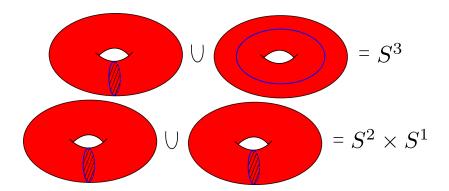


Heegaard splittings



The way we glue matters, up to isotopy.

Heegaard splittings



The way we glue matters, up to isotopy.

Study of 3-manifolds ++++ Study of mapping class groups

 Questions about 3-manifolds voil Questions about the mapping class group (via splittings).

- Questions about 3-manifolds voice Questions about the mapping class group (via splittings).
- Questions about the mapping class groups \rightsquigarrow Purely algebraic questions (via the Dehn-Nielsen theorem).

- Questions about 3-manifolds \views Questions about the mapping class group (via splittings).
- Questions about the mapping class groups \rightsquigarrow Purely algebraic questions (via the Dehn-Nielsen theorem).
- Compute.

What happens if we restrict the set of gluing maps we are allowed to use ?

What happens if we restrict the set of gluing maps we are allowed to use ?

Theorem (F.2021)

Any homology 3-sphere admits a Heegaard splitting such that the gluing map acts trivially on the 4-th nilpotent quotient of the fundamental group of the gluing surface.

What happens if we restrict the set of gluing maps we are allowed to use ?

Theorem (F.2021)

Any homology 3-sphere admits a Heegaard splitting such that the gluing map acts trivially on the 4-th nilpotent quotient of the fundamental group of the gluing surface.

i.e. " J_4 -equivalence is trivial among homology 3-spheres".

Table of Contents

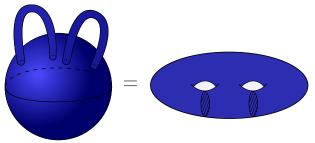
• $\Sigma_{g,1}$ is a surface of genus g with one boundary component. When one caps the boundary with a disk, one gets a closed surface Σ_g .

 Σ_{g,1} is a surface of genus g with one boundary component. When one caps the boundary with a disk, one gets a closed surface Σ_g.

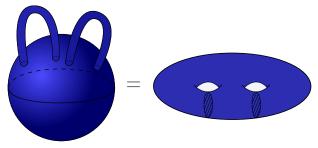
• $\mathcal{M}_{g,1}$ is the mapping class group of the surface:

 $\mathcal{M}_{g,1} := \mathsf{Homeo}^{+,\partial}(\Sigma_{g,1}) / (isotopies fixing the boundary)$

• V_g is a handlebody of genus g.

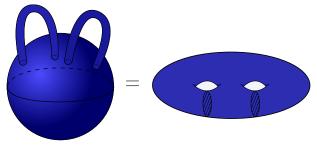


• V_g is a handlebody of genus g.



• The boundary ∂V_g is identified with $\Sigma_g \supset \Sigma_{g,1}$.

• V_g is a handlebody of genus g.



The boundary ∂V_g is identified with Σ_g ⊃ Σ_{g,1}.
A_{g,1} = mapping class group of V_g.

• V_g is a handlebody of genus g.

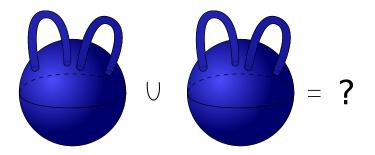


- The boundary ∂V_g is identified with $\Sigma_g \supset \Sigma_{g,1}$.
- $\mathcal{A}_{g,1} =$ mapping class group of V_g .
- $\mathcal{A}_{g,1}$ imbeds in $\mathcal{M}_{g,1}$ (the imbedding depends on the identification $\partial V_g \simeq \Sigma_g$).

Reidemeister-Singer Theorem

Theorem

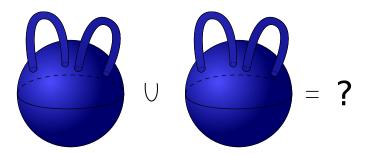
Any closed connected compact oriented 3-manifold can be obtained by gluing two handlebodies together along their boundary.



Reidemeister-Singer Theorem

Theorem

Any closed connected compact oriented 3-manifold can be obtained by gluing two handlebodies together along their boundary.



Any 3-manifold can be described by specifying a homeomorphism of some surface up to isotopy.

Reidemeister-Singer Theorem

Fix for all $g \ge 0$, compatible Heegaard splittings of the 3-sphere:

$$S^3 = V_g \bigcup_{\iota_g} (-V_g).$$

Reidemeister-Singer Theorem

Fix for all $g \ge 0$, compatible Heegaard splittings of the 3-sphere:

$$S^3 = V_g \bigcup_{\iota_g} (-V_g).$$

For any $\varphi \in \mathcal{M}_{g,1}$, one can define

$$S_{\varphi}^3 := V_g \bigcup_{\varphi \circ \iota_g} (-V_g).$$

Reidemeister-Singer Theorem

Fix for all $g \ge 0$, compatible Heegaard splittings of the 3-sphere:

$$S^3 = V_g \bigcup_{\iota_g} (-V_g).$$

For any $\varphi \in \mathcal{M}_{g,1}$, one can define

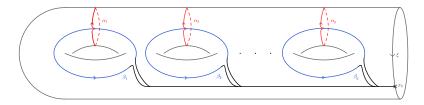
$$S_{\varphi}^3 := V_g \bigcup_{\varphi \circ \iota_g} (-V_g).$$

 $\mathcal{A}_{g,1} =$ homeo extending to the "inner" handlebody V_g . $\mathcal{B}_{g,1} =$ homeo extending to the "outer" handlebody $(-V_g)$. There is a bijection:

$$\mathcal{R}: \lim_{g \to +\infty} \mathcal{A}_{g,1} \setminus \mathcal{M}_{g,1} / \mathcal{B}_{g,1} \longrightarrow \mathcal{V}(3)$$
$$\varphi \longmapsto S^{3}_{\varphi}.$$

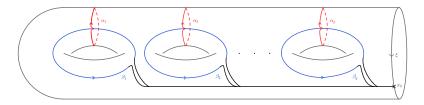
Dehn-Nielsen Theorem

The mapping class group acts on the fundamental group $\pi:=\pi_1(\Sigma_{g,1})$ of the surface.



Dehn-Nielsen Theorem

The mapping class group acts on the fundamental group $\pi := \pi_1(\Sigma_{g,1})$ of the surface.



Theorem

There is a faithful representation

$$\mathcal{M}_{g,1} \xrightarrow{\rho} \operatorname{Aut}(\pi)$$

The Johnson filtration

• Let N_k be the k-th nilpotent quotient of π : $N_k := \pi/\Gamma_{k+1}\pi$. \mathcal{M} acts both on π and all its nilpotent quotients:

$$\mathcal{M} \xrightarrow{\rho} \operatorname{Aut}(\pi) \longrightarrow \operatorname{Aut}(N_k)$$

The Johnson filtration

Let N_k be the k-th nilpotent quotient of π : N_k := π/Γ_{k+1}π.
 M acts both on π and all its nilpotent quotients:

$$\mathcal{M} \xrightarrow{\rho} \operatorname{Aut}(\pi) \longrightarrow \operatorname{Aut}(N_k)$$

• The Johnson filtration is defined by $J_k := \text{Ker}(\rho_k)$. We have

$$\mathcal{M} \supset J_1 \supset J_2 \cdots \supset J_k \cdots$$

The Johnson filtration

Let N_k be the k-th nilpotent quotient of π : N_k := π/Γ_{k+1}π.
 M acts both on π and all its nilpotent quotients:

$$\mathcal{M} \xrightarrow{\rho} \operatorname{Aut}(\pi) \longrightarrow \operatorname{Aut}(N_k)$$

• The Johnson filtration is defined by $J_k := \text{Ker}(\rho_k)$. We have

$$\mathcal{M} \supset J_1 \supset J_2 \cdots \supset J_k \cdots$$

• N_1 is simply $H := H_1(\Sigma_{g,1})$, the abelianization of π .

The Johnson filtration

Let N_k be the k-th nilpotent quotient of π : N_k := π/Γ_{k+1}π.
 M acts both on π and all its nilpotent quotients:

$$\mathcal{M} \xrightarrow{\rho} \operatorname{Aut}(\pi) \longrightarrow \operatorname{Aut}(N_k)$$

• The Johnson filtration is defined by $J_k := \text{Ker}(\rho_k)$. We have

$$\mathcal{M} \supset J_1 \supset J_2 \cdots \supset J_k \cdots$$

- N_1 is simply $H := H_1(\Sigma_{g,1})$, the abelianization of π .
- $\mathcal{I}_{g,1} := J_1$ is the Torelli group, $\mathcal{K}_{g,1} := J_2$ is the Johnson Kernel.

The Johnson filtration

Let N_k be the k-th nilpotent quotient of π : N_k := π/Γ_{k+1}π.
 M acts both on π and all its nilpotent quotients:

$$\mathcal{M} \xrightarrow{\rho} \operatorname{Aut}(\pi) \longrightarrow \operatorname{Aut}(N_k)$$

• The Johnson filtration is defined by $J_k := \text{Ker}(\rho_k)$. We have

$$\mathcal{M} \supset J_1 \supset J_2 \cdots \supset J_k \cdots$$

- N_1 is simply $H := H_1(\Sigma_{g,1})$, the abelianization of π .
- $\mathcal{I}_{g,1} := J_1$ is the Torelli group, $\mathcal{K}_{g,1} := J_2$ is the Johnson Kernel.
- Fundamental example: $\Gamma_k \mathcal{I}_{g,1} \subset J_k$

What happens when one restricts the map ${\mathcal R}$ to the terms of the Johnson filtration ?

What happens when one restricts the map ${\mathcal R}$ to the terms of the Johnson filtration ?

• Restriction to $J_1 = \mathcal{I}_{g,1} \leadsto$ all ZHS. (Birman, 72)

What happens when one restricts the map ${\mathcal R}$ to the terms of the Johnson filtration ?

- Restriction to $J_1 = \mathcal{I}_{g,1} \leadsto$ all ZHS. (Birman, 72)
- Restriction to $J_2 \rightsquigarrow$ still all ZHS (Morita, 89)

Problem

What happens when one restricts the map ${\mathcal R}$ to the terms of the Johnson filtration ?

- Restriction to $J_1 = \mathcal{I}_{g,1} \leadsto$ all ZHS. (Birman, 72)
- Restriction to $J_2 \rightsquigarrow$ still all ZHS (Morita, 89)
- Restriction to $J_3 \rightsquigarrow$ still all ZHS ! (Pitsch, '08)

Problem

What happens when one restricts the map ${\mathcal R}$ to the terms of the Johnson filtration ?

- Restriction to $J_1 = \mathcal{I}_{g,1} \leadsto$ all ZHS. (Birman, 72)
- Restriction to $J_2 \rightsquigarrow$ still all ZHS (Morita, 89)
- Restriction to $J_3 \rightsquigarrow$ still all ZHS ! (Pitsch, '08)

Problem

What happens when one restricts the map ${\mathcal R}$ to the terms of the Johnson filtration ?

- Restriction to $J_1 = \mathcal{I}_{g,1} \leadsto$ all ZHS. (Birman, 72)
- Restriction to $J_2 \rightsquigarrow$ still all ZHS (Morita, 89)
- Restriction to J₃ vor still all ZHS ! (Pitsch, '08)

Theorem (F., 2021)

Any homology 3-sphere is in the image of the restriction of the map \mathcal{R} to $\lim_{g \to +\infty} \mathcal{A}_{g,1} \setminus J_4(\Sigma_{g,1}) / \mathcal{B}_{g,1}$.

Reformulation in terms of equivalence relation

 $M \stackrel{J_k}{\sim} M' \iff$ one can go from a Heegaard splitting of M to a Heegaard splitting of M' by composing the gluing map with an element of J_k .

Reformulation in terms of equivalence relation

 $M \stackrel{J_k}{\sim} M' \iff$ one can go from a Heegaard splitting of M to a Heegaard splitting of M' by composing the gluing map with an element of J_k .

Theorem (F., 2021)

Any homology 3-sphere is in the image of the restriction of the map \mathcal{R} to $\lim_{g \to +\infty} \mathcal{A}_{g,1} \setminus J_4(\Sigma_{g,1}) / \mathcal{B}_{g,1}$. Equivalently, the J_4 -equivalence is trivial among homology 3-spheres.

Reformulation in terms of equivalence relation

 $M \stackrel{J_k}{\sim} M' \iff$ one can go from a Heegaard splitting of M to a Heegaard splitting of M' by composing the gluing map with an element of J_k .

Theorem (F., 2021)

Any homology 3-sphere is in the image of the restriction of the map \mathcal{R} to $\lim_{g \to +\infty} \mathcal{A}_{g,1} \setminus J_4(\Sigma_{g,1}) / \mathcal{B}_{g,1}$. Equivalently, the J_4 -equivalence is trivial among homology 3-spheres.

Y_k equivalence relation

• $M \stackrel{Y_k}{\sim} M' \iff$ one can go from a Heegaard splitting of M to a Heegaard splitting of M' by composing the gluing map with an element of $\Gamma_k \mathcal{I}_{g,1}$.

Y_k equivalence relation

- $M \stackrel{Y_k}{\sim} M' \iff$ one can go from a Heegaard splitting of M to a Heegaard splitting of M' by composing the gluing map with an element of $\Gamma_k \mathcal{I}_{g,1}$.
- The inclusions Γ_{k+1}*I*_{g,1} ⊂ Γ_k*I*_{g,1} ⊂ *J*_k ⊃ *J*_{k+1} induce the following organization:

Results

Theorem

Any homology 3-sphere is in the image of the restriction of the map \mathcal{R} to $\lim_{g \to +\infty} \mathcal{A}_{g,1} \setminus J_4(\Sigma_{g,1}) / \mathcal{B}_{g,1}$. Equivalently, the J_4 -equivalence is trivial among homology 3-spheres.

Results

Theorem

Any homology 3-sphere is in the image of the restriction of the map \mathcal{R} to $\lim_{g \to +\infty} \mathcal{A}_{g,1} \setminus J_4(\Sigma_{g,1}) / \mathcal{B}_{g,1}$. Equivalently, the J_4 -equivalence is trivial among homology 3-spheres.

This is actually equivalent to

Theorem (F,2001)

There exists a homology 3-sphere which is J_4 -equivalent to S^3 and has Casson invariant equal to 1.

Table of Contents

2 Statement of the results

The Casson invariant

 The Casson invariant λ is an invariant of ZHS valued in Z, defined by counting irreducible representations of the fundamental group of the homology 3-sphere into SU(2).

The Casson invariant

- The Casson invariant λ is an invariant of ZHS valued in Z, defined by counting irreducible representations of the fundamental group of the homology 3-sphere into SU(2).
- When performing a knot surgery, its variation can be computed from the Alexander polynomial of the knot.

Morita's formula

• Let $j: \Sigma_{g,1} \hookrightarrow S^3$ be an embedding of image the standard Heegaard surface, then we have a map $\varphi \mapsto S^3(j,\varphi)$ from $\mathcal{M}_{g,1}$ to the set of 3-manifolds.

Morita's formula

- Let $j: \Sigma_{g,1} \hookrightarrow S^3$ be an embedding of image the standard Heegaard surface, then we have a map $\varphi \mapsto S^3(j,\varphi)$ from $\mathcal{M}_{g,1}$ to the set of 3-manifolds.
- If we restrict to $J_1 = \mathcal{I}_{g,1}$, we get homology 3-spheres.

Morita's formula

- Let $j: \Sigma_{g,1} \hookrightarrow S^3$ be an embedding of image the standard Heegaard surface, then we have a map $\varphi \mapsto S^3(j,\varphi)$ from $\mathcal{M}_{g,1}$ to the set of 3-manifolds.
- If we restrict to $J_1 = \mathcal{I}_{g,1}$, we get homology 3-spheres.

Then:

$$\lambda_j : \mathcal{I}_{g,1} \longrightarrow \mathbb{Z}$$
$$\varphi \longmapsto \lambda(S^3(j,\varphi)).$$

Morita's formula

- Let $j: \Sigma_{g,1} \hookrightarrow S^3$ be an embedding of image the standard Heegaard surface, then we have a map $\varphi \mapsto S^3(j,\varphi)$ from $\mathcal{M}_{g,1}$ to the set of 3-manifolds.
- If we restrict to $J_1 = \mathcal{I}_{g,1}$, we get homology 3-spheres.

Then:

$$\lambda_j : \mathcal{I}_{g,1} \longrightarrow \mathbb{Z}$$
$$\varphi \longmapsto \lambda(S^3(j,\varphi)).$$

Morita's formula

- Let $j: \Sigma_{g,1} \hookrightarrow S^3$ be an embedding of image the standard Heegaard surface, then we have a map $\varphi \mapsto S^3(j,\varphi)$ from $\mathcal{M}_{g,1}$ to the set of 3-manifolds.
- If we restrict to $J_1 = \mathcal{I}_{g,1}$, we get homology 3-spheres.

• Then:

$$\lambda_j : \mathcal{I}_{g,1} \longrightarrow \mathbb{Z}$$
$$\varphi \longmapsto \lambda(S^3(j,\varphi)).$$

It is not a homomorphism.

Morita's formula

We will now restrict to $\mathcal{K} = J_2$. The restriction of λ_j to \mathcal{K} is the sum of two homomorphisms.

$$\lambda_j \mid_{\mathcal{K}} = rac{-d}{24} + q_j \circ au_2.$$

Morita's formula

We will now restrict to $\mathcal{K} = J_2$. The restriction of λ_j to \mathcal{K} is the sum of two homomorphisms.

$$\lambda_j \mid_{\mathcal{K}} = rac{-d}{24} + q_j \circ \tau_2.$$

• The core of the Casson invariant d does not depend on j.

Morita's formula

We will now restrict to $\mathcal{K} = J_2$. The restriction of λ_j to \mathcal{K} is the sum of two homomorphisms.

$$\lambda_j \mid_{\mathcal{K}} = rac{-d}{24} + q_j \circ \tau_2.$$

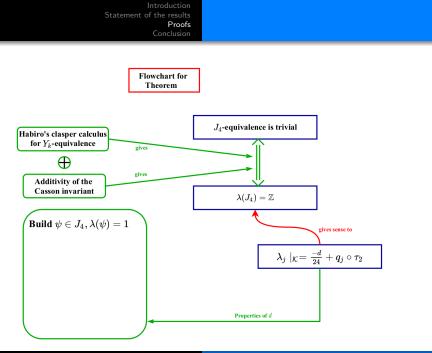
- The core of the Casson invariant d does not depend on j.
- The homomorphism $q_j \circ \tau_2$ vanishes on J_3 .

Morita's formula

We will now restrict to $\mathcal{K} = J_2$. The restriction of λ_j to \mathcal{K} is the sum of two homomorphisms.

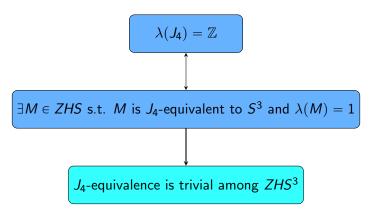
$$\lambda_j \mid_{\mathcal{K}} = rac{-d}{24} + q_j \circ au_2.$$

- The core of the Casson invariant d does not depend on j.
- The homomorphism $q_j \circ \tau_2$ vanishes on J_3 .
- The Casson invariant induces $\lambda : J_4 \rightarrow \mathbb{Z}$.



Quentin Faes 23 / 36

Let us show:



Proof.

Goussarov-Habiro clasper calculus imply that two homology 3-spheres are Y_4 -equivalent if and only if they have the same Casson invariant.

Proof.

Goussarov-Habiro clasper calculus imply that two homology 3-spheres are Y_4 -equivalent if and only if they have the same Casson invariant.

Let P be a homology 3-sphere such that $\lambda(P) = 1$.

Proof.

Goussarov-Habiro clasper calculus imply that two homology 3-spheres are Y_4 -equivalent if and only if they have the same Casson invariant.

Let P be a homology 3-sphere such that $\lambda(P) = 1$. Let M be any homology 3-sphere and set $\lambda(M) = k \in \mathbb{Z}$.

Proof.

Goussarov-Habiro clasper calculus imply that two homology 3-spheres are Y_4 -equivalent if and only if they have the same Casson invariant.

Let P be a homology 3-sphere such that $\lambda(P) = 1$. Let M be any homology 3-sphere and set $\lambda(M) = k \in \mathbb{Z}$. By additivity of the Casson invariant we have that

$$\lambda(S^3 \# P^k) = \lambda(M)$$

Proof.

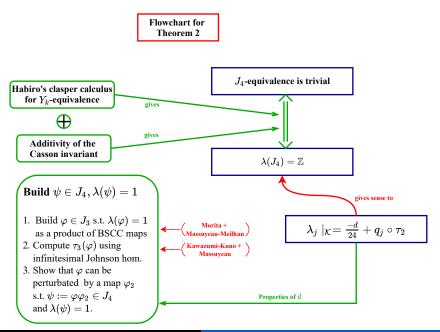
Goussarov-Habiro clasper calculus imply that two homology 3-spheres are Y_4 -equivalent if and only if they have the same Casson invariant.

Let P be a homology 3-sphere such that $\lambda(P) = 1$. Let M be any homology 3-sphere and set $\lambda(M) = k \in \mathbb{Z}$. By additivity of the Casson invariant we have that

$$\lambda(S^3 \# P^k) = \lambda(M)$$

thus,

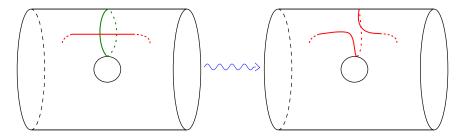
$$M \stackrel{Y_4}{\sim} S^3 \# P^k \stackrel{J_4}{\sim} S^3 \# S^{3k} = S^3$$



Quentin Faes

Elements of the Johnson filtration

Dehn twists generate the mapping class group:



Elements of the Johnson filtration

•
$$\mathcal{I}_{g,1} = J_1$$
 is generated by bounding pairs. $(g \ge 3)$

Elements of the Johnson filtration

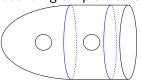
- $\mathcal{I}_{g,1} = J_1$ is generated by bounding pairs. $(g \ge 3)$
- K_{g,1} = J₂ is generated by BSCC maps (Dehn twists along bounding simple closed curves). (g ≥ 2)

Elements of the Johnson filtration

- $\mathcal{I}_{g,1} = J_1$ is generated by bounding pairs. $(g \ge 3)$
- K_{g,1} = J₂ is generated by BSCC maps (Dehn twists along bounding simple closed curves). (g ≥ 2)

Elements of the Johnson filtration

- $\mathcal{I}_{g,1} = J_1$ is generated by bounding pairs. $(g \ge 3)$
- K_{g,1} = J₂ is generated by BSCC maps (Dehn twists along bounding simple closed curves). (g ≥ 2)



• No Dehn twist belong to J_3 .

A slide with blackboxes

• To build an element deeper, one has to multiply Dehn twists, and check that the successive Johnson homomorphisms $\tau_k : J_k \rightarrow D_k(H)$ vanish. (because $\text{Ker}(\tau_k) = J_{k+1}$).

A slide with blackboxes

- To build an element deeper, one has to multiply Dehn twists, and check that the successive Johnson homomorphisms $\tau_k : J_k \to D_k(H)$ vanish. (because $\text{Ker}(\tau_k) = J_{k+1}$).
- Problem: how can we compute (efficiently) the Johnson homomorphisms of a product of Dehn twists ?

A slide with blackboxes

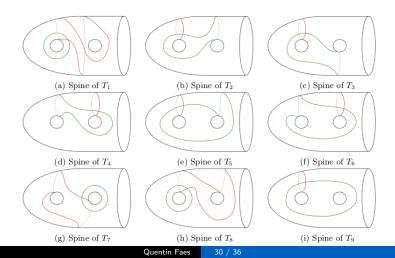
- To build an element deeper, one has to multiply Dehn twists, and check that the successive Johnson homomorphisms $\tau_k : J_k \to D_k(H)$ vanish. (because $\text{Ker}(\tau_k) = J_{k+1}$).
- Problem: how can we compute (efficiently) the Johnson homomorphisms of a product of Dehn twists ?
- A formula by Kawazumi and Kuno computes the action of a Dehn twist on the completion of the group algebra of the fundamental group.

A slide with blackboxes

- To build an element deeper, one has to multiply Dehn twists, and check that the successive Johnson homomorphisms $\tau_k : J_k \to D_k(H)$ vanish. (because $\text{Ker}(\tau_k) = J_{k+1}$).
- Problem: how can we compute (efficiently) the Johnson homomorphisms of a product of Dehn twists ?
- A formula by Kawazumi and Kuno computes the action of a Dehn twist on the completion of the group algebra of the fundamental group.
- We do so by implementing it in a SageMath computer program.

Building an element of J_4 with Casson invariant 1

 $\psi := T_{\gamma_2}^{-3} T_1^{-1} T_2^{-1} T_3^2 T_4^2 T_5 T_6^{-1} T_7^{-1} T_8 T_9^{-1} T_{10} T_{11}^{-1} T_{12}^{-1} T_{13} T_{s1}^7 T_{s2}^2$



Building an element of J_4 with Casson invariant 1

• There exists a map τ_3 with kernel J_4 , computable with SageMath.

Building an element of J_4 with Casson invariant 1

- There exists a map τ_3 with kernel J_4 , computable with SageMath.
- We have $\lambda(\psi) = 1$ and $\psi \in J_3$ but $\tau_3(\psi) \neq 0$.

Building an element of J_4 with Casson invariant 1

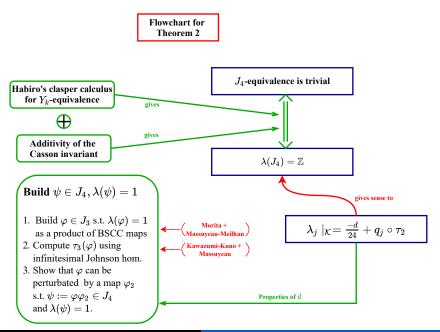
- There exists a map τ_3 with kernel J_4 , computable with SageMath.
- We have $\lambda(\psi) = 1$ and $\psi \in J_3$ but $\tau_3(\psi) \neq 0$.
- Fortunately $\tau_3(\psi) \in \tau_3([J_2, J_1])$ and $\lambda([J_2, J_1]) = 0$ by the properties of the core of the Casson invariant d.

Building an element of J_4 with Casson invariant 1

- There exists a map τ_3 with kernel J_4 , computable with SageMath.
- We have $\lambda(\psi) = 1$ and $\psi \in J_3$ but $\tau_3(\psi) \neq 0$.
- Fortunately $\tau_3(\psi) \in \tau_3([J_2, J_1])$ and $\lambda([J_2, J_1]) = 0$ by the properties of the core of the Casson invariant d.
- $\exists \psi_2 \in [\mathcal{K}, \mathcal{I}]$ s.t. $\varphi := \psi \psi_2 \in \text{Ker}(\tau_3) = J_4$ and $\lambda(\varphi) = 1$.

Table of Contents

2 Statement of the results



Perspectives and remarks

• Extending the method we used to study *J*₅-equivalence does not involve only the Casson invariant.

- Extending the method we used to study *J*₅-equivalence does not involve only the Casson invariant.
- We do not know if J_k-equivalence is always trivial, but we can formulate the weaker conjecture: do we have λ(J_k) = Z for all k ≥ 1 ? (still difficult)

- Extending the method we used to study *J*₅-equivalence does not involve only the Casson invariant.
- We do not know if J_k-equivalence is always trivial, but we can formulate the weaker conjecture: do we have λ(J_k) = Z for all k ≥ 1 ? (still difficult)
- The element φ ∈ J₄ constructed here is not a commutator of elements of the lower terms of the filtration.

- Extending the method we used to study *J*₅-equivalence does not involve only the Casson invariant.
- We do not know if J_k-equivalence is always trivial, but we can formulate the weaker conjecture: do we have λ(J_k) = Z for all k ≥ 1 ? (still difficult)
- The element φ ∈ J₄ constructed here is not a commutator of elements of the lower terms of the filtration.

- Extending the method we used to study *J*₅-equivalence does not involve only the Casson invariant.
- We do not know if J_k-equivalence is always trivial, but we can formulate the weaker conjecture: do we have λ(J_k) = Z for all k ≥ 1 ? (still difficult)
- The element φ ∈ J₄ constructed here is not a commutator of elements of the lower terms of the filtration. The comparison Γ_kI_{g,1} ⊂ J_k is a central question.

Thank you for listening !

Selective bibliography

- Nariya Kawazumi and Yusuke Kuno, The logarithms of Dehn twists, Quantum Topol. 5 (2014), no. 3, 347–423. MR 3283405
- Gwénaël Massuyeau and Jean-Baptiste Meilhan, *Equivalence relations for homology cylinders and the core of the Casson invariant*, Transactions of the American Mathematical Society **365** (2013), no. 10, 5431–5502.
- Shigeyuki Morita, *Casson's invariant for homology 3-spheres and characteristic classes of surface bundles I*, Topology **28** (1989), no. 3, 305–323.

Wolfgang Pitsch, *Integral homology 3-spheres and the Johnson filtration*, Transactions of the American Mathematical Society **360** (2008), no. 6, 2825–2847.