Knot Floer homology and surface diffeomorphisms

Paolo Ghiggini and Gilberto Spano

Knot Online Seminar, 03/03/2022

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Fibred knots

A knot K in a closed three-manifold Y is *fibred* if

- there is a locally trivial fibration $\pi \colon Y \setminus K \to S^1$, and
- in a tubular neighbourhood $N(K) \cong K \times D^2_{r,\theta}$,

$$\pi(x,r,\theta)=\theta.$$

There are:

- a surface with boundary S (the *fibre*) and
- a diffeomorphism $\varphi_0 \in \text{Diff}^+(S,\partial S)$ (the monodromy) such that

$$Y \setminus K = \operatorname{int}(S) \times [0,1]/(x,1) \sim (\varphi_0(x),0).$$

The monodromy is well defined up to isotopy.

Knot Floer homology

Let $K \subset Y$ be a null-homologous knot. Knot Floer homology is a sequence of $\mathbb{Z}/2\mathbb{Z}$ -vector spaces $\widehat{HFK}(Y, K, d)$, $d \in \mathbb{Z}$, defined by Ozsváth and Szabó and, independently, Rasmussen.

- It categorifies the Alexander polynomial (Ozsváth and Szabó)
- It detects the genus: $\widehat{HFK}(Y, K, d) = 0$ if |d| > g and $\widehat{HFK}(Y, K, -g) \neq 0$ (O-Sz, Ni),
- It detect fibredness: K is fibred iff dim $\widehat{HFK}(Y, K, -g) = 1$ (G., Ni),
- More generally, *HFK*(Y, K, -g) is a measure of the complexity of the sutured manifold decompositions of the knot complement (Juhász).

The main result

If $\varphi \colon S \to S$ is a "good" diffeomorphism, $HF^{\sharp}(\varphi)$ is a $\mathbb{Z}/2\mathbb{Z}$ -vector space which "counts" the fixed points of φ .

Theorem

If $K \subset Y$ is a fibred knot of genus g and φ is a "good" representative of the monodromy, then

$$\widehat{\mathit{HFK}}(-Y,-K,1-g)\cong \mathit{HF}^{\sharp}(\varphi).$$

– denotes reversing the orientation. In S^3 it corresponds to mirroring the knot.

A similar result has been obtained by Ni using the isomorphism between Heegaard Floer homology and periodic Floer homology (Lee-Taubes and Kutluhan-Lee-Taubes)

Some applications

From work of Thurston, Nielsen, Gautschi and Cotton-Clay we can derive the following corollaries.

Corollary (Baldwin and Vela-Vick) If $K \subset Y$ is a fibred know to genus g, then $\widehat{HFK}(Y, K, 1-g) \neq 0$.

Corollary

if $K \subset Y$ is not the trivial knot in S^3 and φ_{th} is the Thurston representative of the monodromy, then

$$\operatorname{Fix}(\varphi_{th}) \leq \dim \widehat{HFK}(-Y, -K, 1-g) - 1$$

Corollary

If $K \subset S^3$ is an L-space knot, then the Thurston representative of the monodromy has no fixed points.

More applications

We denote by $\Sigma_n(Y, K)$ the *n*-fold cyclic cover of Y branched along K and by $K_n \subset \Sigma_n(Y, K)$ the ramification locus. If φ is the monodromy of K, then φ^n is the monodromy of K_n .

Corollary

If $K \subset Y$ is a fibred knot, the JSJ decomposition of $Y \setminus K$ contains a hyperbolic piece iff the dimension of $\widehat{HFK}(-\Sigma_n(Y,K), -K_n, 1-g)$ grows exponentially with n. From results of A'Campo and McLean we obtain:

Corollary

If $K \subset S^3$ is the link of an irreducible isolated hypersurface singularity, then the multiplicity of the singularity is equal to

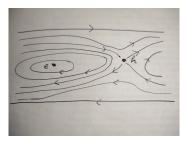
$$\min\{n>0|\dim\widehat{HFK}(-\Sigma_n(S^3,K),-K_n,1-g)\neq 1\}.$$

Good representatives for the monodromy

We fix a diffeomorphism $\varphi \colon S \to S$ such that

- there exists a 1-form β on Σ such that $d\beta$ is an area form and $\varphi^*\beta-\beta$ is exact,
- in a collar A of ∂S , φ has the following form:
 - ∂S is rotated negatively by a small angle ε ,
 - the other component of ∂A is rotated positively by a small angle ε ,
 - in the interior of A there are only two fixed points: an elliptic one e and a hyperbolic one h,
- the fix points of φ are nondegenerate, and
- φ is isotopic to φ_0 by an isotopy which moves ∂S by less than ε (in either direction).

Focus on the collar



- ∂S is rotated negatively by a small angle ε ,
- the other component of ∂A is rotated positively by a small angle ε,
- in the interior of A there are only two fixed points: an elliptic one e and a hyperbolic one h,

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The Floer homology group $HF^{\sharp}(\varphi)$

 $CF^{\sharp}(\varphi)$ is the vector space over $\mathbb{Z}/2\mathbb{Z}$ generated by the fixed points of φ except for e.

The differential $\partial^{\sharp}\colon \mathit{CF}^{\sharp}(\varphi)\to \mathit{CF}^{\sharp}(\varphi)$ is defined by

$$\partial^{\sharp}(p_{+}) = \sum_{\substack{p_{-} \in \operatorname{Fix}(arphi) \ p_{-} \neq e}} \# \left(\mathcal{M}(p_{+}, p_{-}) / \mathbb{R}
ight)_{0} p_{-}$$

 $(\mathcal{M}(p_+, p_-)/\mathbb{R})_0$ is the 0-dimensional part of the moduli space $\mathcal{M}(p_+, p_-)/\mathbb{R}$ (defined in the next slide).

 $HF^{\sharp}(\varphi)$ is the homology of $(CF^{\sharp}(\varphi), \partial^{\sharp})$.

Moduli spaces for ∂^{\sharp}

- T_{arphi} mapping torus $[0,1] imes S/(1,x) \sim (0,arphi(x))$,
- R transverse vector field,
- J almost complex structure on $\mathbb{R} \times T_{\varphi}$ such that:
 - $\mathbb{R} imes T_{arphi} o \mathbb{R} imes S^1$ is holomorphic,
 - $J(\partial_s) = R$, where ∂_s generate the translations in \mathbb{R} ,
 - $\mathcal{L}_{\partial_s}J=0$, and
 - J is compatible with $d\beta$ on each fibre.

Fixed points p of φ are in bijections with closed orbits γ_p of R which project to S^1 with degree one.

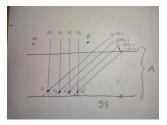
 $\mathcal{M}(p_+, p_-)$ is the set of *J*-holomorphic sections $u \colon \mathbb{R} \times S^1 \to \mathbb{R} \times T_{\varphi}$ such that $\lim_{s \to \pm \infty} u(s, t) = \gamma_{p_{\pm}}(t)$.

 \mathbb{R} translations on $\mathbb{R} \times T_{\varphi}$ act on $\mathcal{M}(p_+, p_-)$ and $\mathcal{M}(p_+, p_-)/\mathbb{R}$ is the quotient.

Bases of arcs

let $\mathbf{a} = (a_1, \ldots, a_{2g})$ be a basis of arcs for S, i.e. a set of arcs which cut S into a disc, and let $\varphi(\mathbf{a}) = (\varphi(a_1), \ldots, \varphi(a_{2g}))$ be the image of \mathbf{a} by the monodromy.

The intersection pattern between \boldsymbol{a} and $\varphi(\boldsymbol{a})$ in the collar A looks like in the picture:



Knot Floer homology

 $\widetilde{CFK}(S, \varphi(\mathbf{a}), \mathbf{a}, d)$ is the $\mathbb{Z}/2\mathbb{Z}$ -vector space generated by 2g-tuples of intersection points $\mathbf{x} = (x_1, \dots, x_{2g})$ such that

 each arc in *a* and each arc in φ(*a*) contains exactly one intersection point, and

• exactly g - d intersection points are in the collar A. $\widehat{CFK}(S, \varphi(\mathbf{a}), \mathbf{a}, d)$ is the quotient of $\widetilde{CFK}(S, \varphi(\mathbf{a}), \mathbf{a}, d)$ by the relation $(\dots, c_i, \dots) \sim (\dots, c'_i, \dots)$.

The differential $\widehat{CFK}(S, \varphi(\mathbf{a}), \mathbf{a}, d) \rightarrow \widehat{CFK}(S, \varphi(\mathbf{a}), \mathbf{a}, d)$ is defined by

$$\widehat{\partial}(\mathbf{x}_+) = \sum_{\mathbf{x}_-} \# \left(\mathcal{M}(\mathbf{x}_+, \mathbf{x}_-) / \mathbb{R} \right)_0 \mathbf{x}_-$$

and $\widehat{HFK}(-Y, -K, d)$ is the homology of $(\widehat{CFK}(S, \varphi(a), a, d), \widehat{\partial})$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Moduli spaces for $\widehat{\partial}$

- J almost complex structure on $\mathbb{R}\times [0,1]\times S$ such that:
 - $\mathbb{R} \times [0,1] imes S o \mathbb{R} imes [0,1]$ is holomorphic,
 - J(∂_s) = ∂_t, where s is the coordinate on ℝ and t is the coordinate in [0, 1],
 - $\mathcal{L}_{\partial_s}J = 0$, and
 - J is compatible with $d\beta$ on each fibre.

 $\mathcal{M}(\mathbf{x}_+, \mathbf{x}_-)$ is the set of *J*-holomorphic embedded multi-sections

$$u: \mathbb{R} \times S^1 \to \mathbb{R} \times [0,1] \times S$$

with boundary on $\mathbb{R} \times \{0\} \times \varphi(\boldsymbol{a})$ and $\mathbb{R} \times \{1\} \times \boldsymbol{a}$ such that $\lim_{s \to \pm \infty} u(s, t) = \{t\} \times \boldsymbol{x}_{\pm}.$

 \mathbb{R} translations act on $\mathcal{M}(\mathbf{x}_+, \mathbf{x}_-)$ and $\mathcal{M}(\mathbf{x}_+, \mathbf{x}_-)/\mathbb{R}$ is the quotient; $(\mathcal{M}(\mathbf{x}_+, \mathbf{x}_-)/\mathbb{R})_0$ is the 0-dimensional part of $\mathcal{M}(\mathbf{x}_+, \mathbf{x}_-)/\mathbb{R}$.

The cobordism E

Denote $B = D^2 \setminus \{0, 1\}$ and let $\pi \colon E \to B$ be the flat bundle with fibre S and monodromy φ .

We fix an identification $\mathfrak{r}: (0,1) \times S \to \pi^{-1}(\partial B) \subset E$ and define $L = \mathfrak{r}((0,1) \times a)$.

We fix holomorphic identifications of:

- a punctured neighbourhood of $0\in B$ with $(-\infty,0) imes S^1$, and
- a punctured neighbourhood $1 \in B$ with $(0, +\infty) \times [0, 1]$.

Over these neighbourhoods we fix identifications of E with

$$(-\infty,0) imes T_arphi$$
 and $(0,+\infty) imes [0,1] imes S.$

In the second neighbourhood L looks like

$$((0,+\infty)\times\{0\}\times\varphi(\boldsymbol{a}))\cup((0,+\infty)\times\{1\}\times\boldsymbol{a}).$$

The chain map Φ^{\sharp}

We define a chain map

$$\Phi^{\sharp} \colon \widehat{\mathit{CFK}}(S, \varphi(\mathbf{a}), \mathbf{a}, 1-g) o \mathit{CF}^{\sharp}(\varphi)$$

as follows:

$$\Phi^{\sharp}(\boldsymbol{x}) = \sum_{\substack{\boldsymbol{p} \in \mathsf{Fix}(\varphi) \\ \boldsymbol{p} \neq \boldsymbol{e}}} \# \mathcal{M}_0(\boldsymbol{x}, \boldsymbol{p}) \boldsymbol{p}$$

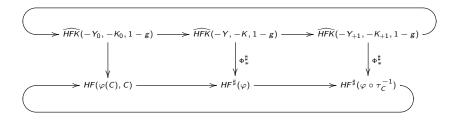
 $\mathcal{M}_0(\mathbf{x}, p)$ is the 0-dimensional part of the moduli space of embedded *J*-holomorphic multi-sections $u: B \to E$ with boundary on *L* such that

- $\lim_{s \to +\infty} u(s, t) = \{t\} \times \{x\}$ in a punctured neighbourhood of 1, and
- lim_{s→-∞} u(s, t) = (γ_p(t), γ_e(t), ..., γ_e(t)) in a punctured neighbourhood of 0.

Two exact sequences

Let $C \subset S$ be a nonseparating closed curve and τ_C the positive Dehn twist along C.

We can see *C* also as a framed knot in *Y* disjoint from *K*, with the framing induced by a fibre, and let $K_r \subset Y_r$ be the result of *r*-surgery on *C*. Then we have exact triangles



・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

and the diagram commutes.

Proof of the theorem

Lemma

The map $\widehat{HFK}(-Y_0, -K_0, 1-g) \rightarrow HF(\varphi(C), C)$ is an isomorphism.

By the five-lemma, $\Phi^{\sharp} \colon \widehat{HFK}(-Y, -K, 1-g) \to HF^{\sharp}(\varphi)$ is an isomorphism iff $\widehat{HFK}(-Y_{+1}, -K_{+1}, 1-g) \to HF^{\sharp}(\varphi \circ \tau_{C}^{-1})$ is an isomorphism.

Every diffeomorphism of S can be decomposed as a product of Dehn twists $\varphi = \tau_{C_1}^{s_1} \circ \ldots \circ \tau_{C_n}^{s_n}, \quad s_i \in \{+1, -1\}.$

We argue by induction on the number of Dehn twists *n*:

- If n = 0 then φ = id and we check by hand that Φ[♯]_{*} is an isomorphism.
- If the theorem true for n-1, then we have an isomorphism for $\varphi \circ \tau_{C_n}^{-s_n}$, and therefore an isomorphism for φ .