

Unknotting & colordism distances (joint w/P. Feller)	Thu: A:= { knots with A(ex pol 13. YK:
Def: K. J Mots (up to iso topy)	Thu: A:= { knots with A(ex pol 13. YK: (in any ZHS3) dbu(4,CA) = d3d(K,CA)= d1l(K,CA)= dee(4,CA)
metric dbu (KiJ):= min {n Kms J by changing at most n pos & at most n neg cr. 3	Example for dou > dod: U(K) = 3 (Owens 'Ob, using begand - Floor & Jone,)
metric $d_{3d}(K,\overline{f}):=\min\{g(\Sigma) \Sigma 3d\cdot colordom$ $ie \Sigma^{1}CS^{3}, \partial\Sigma = K^{nev}\cup\overline{f}$	=) don (K, unlinot) E {2,3} But dod (K, curlinot) \le g(K) = 1 for all linots K
metric dele (K,7):= min {n U ms 7 by 2n saddle moves }	Example for g(K) > d3d Not quani-isometric Example for g(K) > d3d(K, unlinot):
pseudomatric dee (K.J) := min {g (∓) Fepiepi cobordism K → J}	$K = Trefoil # - Trefoil$ $g(K) = 2$ $d_{3d}(K, unlinit) = 1$
Cobordism:	Plan of talk: (1) Proof prop (2) dee (3) Shetch Proof of This (4) Further results

- 1

Pf dbu 2 d3d: dbu (k,7)=n => U~>7 bg " 2": May arrange saddle, to happen simultaneously changing upos & n mey cr. (2 ~ >>) Z:= untwisted annulus U 1-handle for each saddle move [] PS die > dee: 2n saddkmores Kno J May arrange all change to happen simultaneously. give colondisms U->) and J-> U with only 1-handles May arrange change, in pairs of one mes to one pos change each that are next to each other: Handle attached to X7 Effection 80-cosordism K-J of genm n: When I T((X7) new generator J 11 now relation no effect [] PE of triangle inequally forder: · →>> • use Seifet van Nampen, Example for U+J, dee(K,J)=0 $(< d_{u}(K,J))$ If of dad = del: ">" \ 3d-colordian K->] 1-handle O-handle = K
genns-0-cobordism = K > J Z = twisted annulus with D = K evk v 2g(Z) 1-handles ~> saddle $\begin{array}{cccc} & & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$ 2 Ker Kar Saldler (Meier-Livingston) 11_{n42} (choice of 1-handle) Cinfact Z=Tr (Xn) => Tr(X7)

Corollary g(k) = 1 => K ms knot with Atex pol 1 by two crossing change.

