Bi-Perron numbers and the Alexander polynomial

K-OS, October 8, 2020

Livio Liechti Université de Fribourg

Content

- I) Bi-Perron numbers
- II) Links and the Alexander polynomial
- III) Spectral radii of integer symmetric matrices

Particular geometric situations often give rise to particular algebraic numbers.

Problem Relate the numbers to their geometry.

Example: coordinates of points constructed with ruler and compass are algebraic of degree a power of two.

"Cannot double the cube"

In this talk: bi-Perron numbers.

Definition

A bi-Perron number λ is a real algebraic unit $\lambda > 1$ all of whose Galois conjugates have modulus in the open interval $(1/\lambda, \lambda)$, except for λ itself and possibly one of $\pm 1/\lambda$.

Examples

- 1. The golden ratio $\varphi = \frac{1+\sqrt{5}}{2}$,
- 2. the square of the golden ratio,
- 3. Salem numbers, eg. Lehmer's number with minimal polynomial $t^{10} + t^9 t^7 t^6 t^5 t^4 t^3 + t + 1$,

4. growth rates of surface homeomorphisms (Fried '85).

Main result

Theorem (L. – Pankau '20)

For λ bi-Perron, the following are equivalent

- a) all Galois conjugates of λ are contained in $S^1 \cup \mathbb{R}$,
- b) for some positive integer k, λ^k is the stretch factor of a pseudo-Anosov map arising from Thurston's construction,
- c) for some positive integer k, λ^k is the spectral radius of a bipartite Coxeter transformation of a bipartite and simple Coxeter diagram.

Main result

Theorem (Knot-theoretic variation)

For λ bi-Perron, the following are equivalent

- a) all Galois conjugates of λ are contained in $S^1 \cup \mathbb{R}$,
- b) for some positive integer k, the number $-\lambda^k$ is the maximal root (in modulus) of the Alexander polynomial of a link with upper triangular block 2 × 2 Seifert matrix with identity blocks on the diagonal.

Problem

Find a more geometric class of links for b).

Properties of bi-Perron numbers

Lemma (Strenner '17)

Let λ be bi-Perron with minimal polynomial $(t - \lambda_1) \cdots (t - \lambda_n)$. Then λ^k is bi-Perron with minimal polynomial $(t - \lambda_1^k) \cdots (t - \lambda_n^k)$.

Lemma

Let λ be bi-Perron number. Let $\mu \notin \mathbb{R}$ be a Galois conjugate of λ . Then the argument of μ is an irrational multiple of π .

Proof.

Assume $\mu \notin \mathbb{R}$ has argument $\frac{2\pi p}{q}$. Both $\mu \neq \bar{\mu}$ are Galois conjugates of λ . By the lemma, μ^q and $\bar{\mu}^q$ are different Galois conjugates of λ^q . But $\mu^q = \bar{\mu}^q$, a contradiction.

II. Links and the Alexander polynomial

Let *L* be a link with upper triangular block 2×2 Seifert matrix with identity blocks on the diagonal.

Example

Positive arborescent Hopf plumbings

Example

a Murasugi sum of two arbitrary connected sums of positive Hopf bands

The Alexander polynomial

Suppose
$$A = \begin{pmatrix} I_n & X \\ 0 & I_m \end{pmatrix}$$
 is a Seifert matrix of *L*.

Then $\Delta_L(t) = \det(tA^{\top} - A) = \det(tI - AA^{-\top}) = \chi_M(t)$, where $M = AA^{-\top}$.

Lemma

The eigenvalues λ_i of the matrix M are related to the eigenvalues μ_i of $\Omega = \begin{pmatrix} 0 & X \\ X^\top & 0 \end{pmatrix}$ by

$$\mu_i^2 = 2 - \lambda_i - \lambda_i^{-1}.$$

Proof. $\Omega^2 = 2I - M - M^{-1}.$

Proposition

Let L be a link with upper triangular block 2×2 Seifert matrix with identity blocks on the diagonal. Then all zeros of $\Delta_L(t)$ are contained in $S^1 \cup \mathbb{R}_{<0}$.

Proof. (cf. A'Campo '76, McMullen '02, etc.) The matrix $\Omega = \begin{pmatrix} 0 & X \\ X^{\top} & 0 \end{pmatrix}$ is symmetric, so every μ_i is real and every μ_i^2 is positive.

In particular, every solution λ_i of $\mu_i^2 = 2 - \lambda_i - \lambda_i^{-1}$ must be contained in $S^1 \cup \mathbb{R}_{<0}$.

Theorem

For λ bi-Perron, the following are equivalent

- a) all Galois conjugates of λ are contained in $S^1 \cup \mathbb{R}$,
- b) for some positive integer k, the number $-\lambda^k$ is the maximal root (in modulus) of the Alexander polynomial of a link with upper triangular block 2 × 2 Seifert matrix with identity blocks on the diagonal.

Proof of b) \implies a):

Let *L* be a link with upper triangular block 2×2 Seifert matrix with identity blocks on the diagonal.

Let λ be bi-Perron such that $-\lambda^k$ is the maximal root of $\Delta_L(t)$ in modulus.

All roots of $\Delta_L(t)$ are contained in $S^1 \cup \mathbb{R}_{<0}$. So all Galois conjugates of λ^k are contained in $S^1 \cup \mathbb{R}_{>0}$.

Assume μ is a Galois conjugate of λ and $\mu \notin S^1 \cup \mathbb{R}$. The argument of μ is an irrational multiple of π . But μ^k is a Galois conjugate of λ^k and so in $S^1 \cup \mathbb{R}_{>0}$, a contradiction.

III. Spectral radii of integer symmetric matrices

For a) \implies b), we need the following constructive result.

Proposition (Pankau '17 for Salem numbers)

Let λ be a bi-Perron number all of whose Galois conjugates are contained in $S^1 \cup \mathbb{R}$. Then there exists a positive integer k such that $\lambda^k + \lambda^{-k}$ equals the spectral radius of a positive symmetric integer matrix.

Proof of $a) \implies b$:

Let λ be a bi-Perron number all of whose Galois conjugates are contained in $S^1 \cup \mathbb{R}$.

Let X be a symmetric integer matrix with spectral radius $\lambda^k + \lambda^{-k}$, for some positive integer k.

Take a link with Seifert matrix
$$A = \begin{pmatrix} I & X \\ 0 & I \end{pmatrix}$$
.

The eigenvalues α_i of the matrix $M = AA^{-\top}$ are related to the eigenvalues μ_i of $\Omega = \begin{pmatrix} 0 & X \\ X^{\top} & 0 \end{pmatrix}$ by $\mu_i^2 = 2 - \alpha_i - \alpha_i^{-1}$.

The maximal eigenvalue μ_i^2 is $(\lambda^k + \lambda^{-k})^2 = \lambda^{2k} + \lambda^{-2k} + 2$. So the maximal (in modulus) α_i equals $-\lambda^{2k}$.

A more geometric class of links?

Remark

Can take the matrix X to only have entries 0 and 1.

Fairly close to this kind of construction:

Problem

Find a more geometric class of links for b).

Merci!