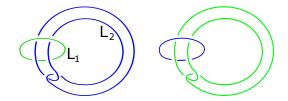
Symmetries of Knots and Links

Chuck Livingston Indiana University

details and citations at: Intrinsic Symmetry Groups of Links arxiv.org/abs/2110.03502

> [K-OS] March 31, 2022

THE WHITEHEAD LINK: UNORIENTED

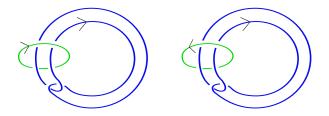


Is it possible to deform the colored link on the left to look like the link on the right?

More formally, given an ordered link (L_1, L_2) , does $(L_1, L_2) = (L_2, L_1)$?

Problem. Find a 2–component link (L_1, L_2) with unknotted components for which $(L_1, L_2) \neq (L_2, L_1)$.

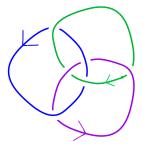
THE WHITEHEAD LINK: ORIENTED



Is it possible to deform the *oriented* colored link on the left to look like the link on the right?

More formally, given an ordered oriented link (L_1, L_2) , does $(L_1^r, L_2) = (L_1, L_2)$?

THE BORROMEAN RINGS



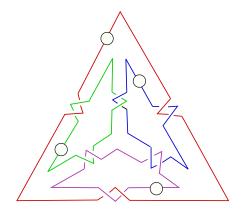
There are 6 ways to permute the colors, 8 ways to orient the components, and we can form the mirror image. Thus, we can form 96 possible "Borromean Links." **Problem.** How many are distinct?

More formally, the group $Z_2 \oplus ((Z_2)^3 \rtimes S_3)$ acts on the set of ordered, oriented 3–component links. What is the stabilizer of the pictured link?

 $(K, J) \rightarrow (J, K) \rightarrow (J^r, K)$ vs. $(K, J) \rightarrow (K^r, J) \rightarrow (J, K^r)$

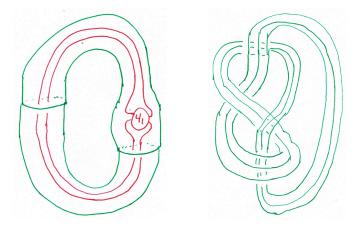
A LINK WITH SYMMETRY GROUP THE ALTERNATING GROUP A_4

If the small circles are ignored, this (unoriented) link has symmetry group S_4 . By placing appropriate knots in the circles, the symmetry group becomes A_4 . Thanks to Nathan Dunfield and SnapPy for this example.



AN *n*-component non-split link with "full" oriented symmetry group

Replace each green curve on the right with copy of the knot in solid torus on the left. (Budney found n = 2 case.)



MAIN RESULT

1960's. Fox-Whitten defined what is now called the Whitten group:

 $\Gamma_n = \mathbf{Z}_2 \oplus ((\mathbf{Z}_2)^n \rtimes S_n).$

It acts on the set of n-component links. The intrinsic symmetry group of a link is

 $\Gamma(L) = \{g \in \Gamma_n \mid gL = L\}.$

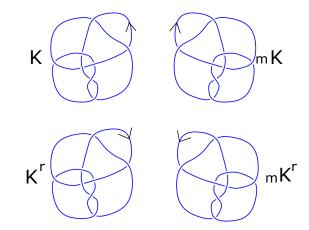
Question. What subgroups of Γ_n arise as $\Gamma(L)$ for some oriented *n*-component link *L*? The first negative result is:

Theorem. For $n \ge 6$, there does not exist a link with symmetry group ("projecting" onto) the alternating group A_n .

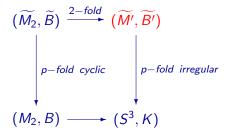
More precisely, for all L:

 $\mathsf{Image}(\Gamma(L) \cap \left((\mathbf{Z}_2)^n \rtimes S_n \right) \to S_n \right) \neq A_n.$

BASIC SYMMETRY PROPERTIES OF KNOTS



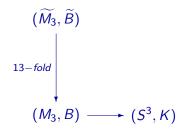
 $K = K^r$, Reversible K = mK, Positive Amphichiral $K = mK^r$, Negative Amphichiral *K* has a 2-fold cyclic branched cover $M_2(K)$. Suppose that $H_1(M_2) \cong Z_p$. Then there is a unique *p* fold cover \widetilde{M}_2 of M_2 in which the branch set lifts to *p* components. Diagrammatically,



The linking numbers (if defined) of lifts \widetilde{B}_i and \widetilde{B}_j can detect orientation. (*Reidemeister considered linking numbers in the p-fold irregular cover shown in red.* $\widetilde{M'}$.)

How to Prove $K \neq K^r$ (Hartley's method ~1977)

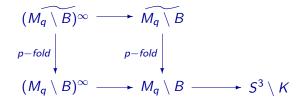
- 8_{17} has a 3-fold cyclic branched cover satisfying $H_1(M_3(K)) = (Z_{13})^2$.
- The deck transformation of M_3 acts on $(Z_{13})^2$ as a Z_{13} -vector spaces, splitting it into 3 and 9 eigenspaces, E_3 and E_9 .
- Surjection $H_1(M_3) \rightarrow H_1(M_3)/E_3 \cong \mathbb{Z}_{13}$ induces a 13-fold cover.



Reversing K interchanges E₃ and E₉. Thus, K and K^r can be distinguished using the homology of M₃ \ B̃.

INFINITE CYCLIC COVERS AND TWISTED ALEXANDER POLYNOMIALS.

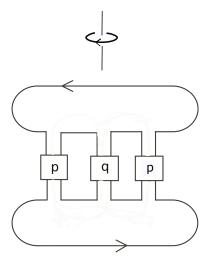
Suppose that $H_1(M_q)$ maps onto \mathbb{Z}_p . The surjection $H_1(S^3 \setminus K)$ induces infinite cyclic covers (deck transformation T of infinite order):



- *H*₁((*M_q* \ *B*)[∞]) is a ℤ[*T*, *T*⁻¹]-module. Its order is the Alexander polynomial (after a change of variables).
- H₁((M_q \ B)[∞]) is a Z[T, T⁻¹]-module. Its order is a twisted Alexander polynomial. It provides strong constraints on reversibility, including in the setting of concordance.

STRONGLY REVERSIBLE KNOTS

K is called strongly reversible if it can be reversed via an involution of S^3 .



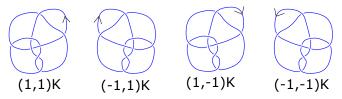
STRONGLY REVERSIBLE KNOTS

Theorem. (Whitten, others). A double of a knot K is reversible, but it is strongly invertible if and only if K is strongly invertible.

Proof. Doubled knots have unique companions (Schubert). Replace the given involution with one that preserves the separating torus.

Warning: Companions of doubled knots are (up to orientation) unique. This is not true for all companions.

FORMAL VIEW OF KNOT SYMMETRY



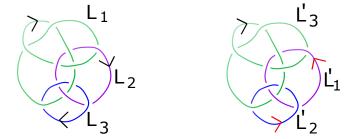
There is an action of the group $Z_2 \oplus Z_2$ on the set of knots. The first factor acts by taking the mirror image. The second factor acts by reversing the string direction. For any knot K we can define the *intrinsic symmetry group* of K to be

 $\Gamma(K) = \{(a, b) \in \mathbf{Z}_2 \oplus \mathbf{Z}_2 \mid (a, b)K = K\}$

 $\begin{array}{l} \textbf{Z}_2 \oplus \textbf{Z}_2 \text{ has three proper subgroups:} \\ \Gamma(\mathcal{K}) = \langle (-1,1) \rangle & + \text{amphichiral} \\ \Gamma(\mathcal{K}) = \langle (1,-1) \rangle & \text{reversible} \\ \Gamma(\mathcal{K}) = \langle (-1,-1) \rangle & - \text{amphichiral} \end{array}$

LINK SYMMETRIES

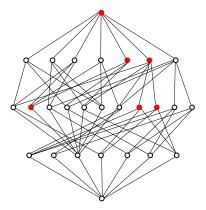
The Whitten group $\Gamma_n = \mathbb{Z}_2 \oplus ((\mathbb{Z}_2)^n \rtimes S_n)$ acts on the set of *n*-component links. The first \mathbb{Z}_2 acts on links by taking the mirror image. S_n acts on $(\mathbb{Z}_2)^n$ by permuting the coordinates.



 $(1) \oplus (-1, -1, 1)(123)L = (L_2^r, L_3^r, L_1).$

 $\Gamma(K) = \{g \in \Gamma_n \mid gK = K\}$

SUBGROUPS OF $\Gamma_2 = \mathbf{Z}_2 \oplus ((\mathbf{Z}_2)^2 \rtimes S_2)$

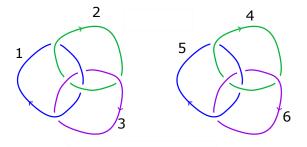


Here is the lattice of conjugacy classes of subgroups of Γ_2 , taken from work of Cantarella, Cornish, Mastin, Parsley. The red dots are subgroups which do not arise for 14 crossing hyperbolic links. Some occur for general links. The subgroup $\langle (1, 1, -1)(12) \rangle$ is unknown.

HIGHER NUMBER OF COMPONENTS.

Theorem. For $n \ge 6$, there does not exist a link L with $\Gamma^*(L)$ projecting to the alternating group $A_n \subset S_n$. ($\Gamma^*(L) \subset \Gamma(L)$ is subgroup arising from $\mathbf{Z}^n \rtimes S_n \subset \mathbf{Z}^{n+1} \rtimes S_n$ with first component 1.)

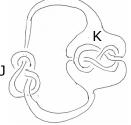
Case 1) Split links. Any symmetry preserves the non-split pieces of the link. But A_6 acts transitively on the set of pairs i, j.



For this link there is no isotopy corresponding to $(14)(23) \in A_6$

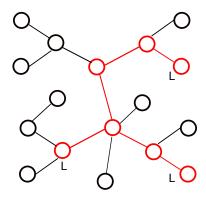
Proof outline, ruling out A_6 in non-split case.

Case 2) A non-split link complement contains an (essentially) unique minimal set of tori $\{T_i\}$ separating it into Seifert fibered and hyperbolic pieces. (The Jaco-Shalen-Johansson decomposition. See Budney: "JSJ ... ".)



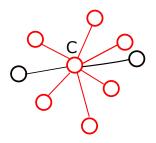
We can form a tree with vertices corresponding to components of $S^3 \setminus \{T_i\}$ and edges corresponding to tori. "Bor" denotes the Borromean link.

Here is a possibility for a 6 component link, with subtree spanned by the components whose closure contains elements of L. Each vertex marked "L" is a component that contains two components of L.

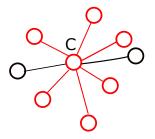


Symmetries of the link provide symmetries of the tree "spanned by the link," shown in red. In the case of A_6 one can show that some red vertex is fixed. Conclusion: Some component C of $S^3 \setminus \{T_i\}$ has at least 6 boundary components

and has symmetries that act as A_6 on 6 of those boundary components.



If C is Seifert fibered, it has a large set of symmetries, leading to conclusion that $\Gamma(L)$ contains a transposition, so is not A_6 .

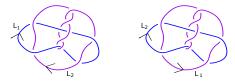


If *C* is hyperbolic, then (as observed by Budney) it reembeds into S^3 as the complement of a hyperbolic link *L*' (with perhaps more than 6 components).

Hyperbolic geometry permits one to realize symmetries of *L* using a finite group of isometries. Non-free finite groups of diffeomorphisms of S^3 are isomorphic to subgroups of SO(4) (Bouleau, Leeb, Porti). Such groups do not map onto A_6 , as can be proved by reducing to SO(3).

A FEW PROBLEMS

• Complete the determination of possible symmetry groups of 2-component links. Is there are link for which $(L_1, L_2) = (L_2, L_1^r)$ and that generates all its symmetries?



- O the symmetry groups that arise from links, arise from links with unknotted components? From Brunnian links? Etc.
- Omplete the analysis for hyperbolic links.
- Is there a 5-component link with symmetry group A₅ I suspect that there is a 12-component link with symmetry group isomorphic to A₅, built from dodecahedron. A₅ acts on a set of five cubes inscribed in the dodecahedron; maybe this can be used to build a 5-component link with symmetry group A₅.