Exotic Brunnian Surface links

w/ Kyle Hayden, Alexandra Kjuchukova, Siddh: Krishna, Mark Powell, Nathan Sunukjian

Theme: exotic surfaces

Two surfaces S, Sz in a 4-manifold X are an exotic pair if they are topologically isotopic but there is no diffeomorphism $(X,S,) \rightarrow (X, S_2)$ "S, S₂ not smoothly equivalent"

Open question: There are non-orientable ones There are non-orientable ones Finashen-Kreck-Viro Do flere exist exotic "orientable surfaces in 54?

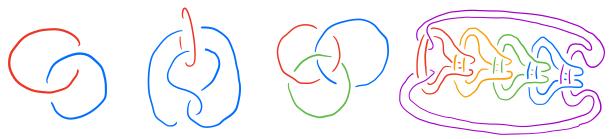
Next closest thing B4?

I

The (Juhasz-M-Zeurke, Hayden 2020) There exist exotic orientable surfaces in B⁴.

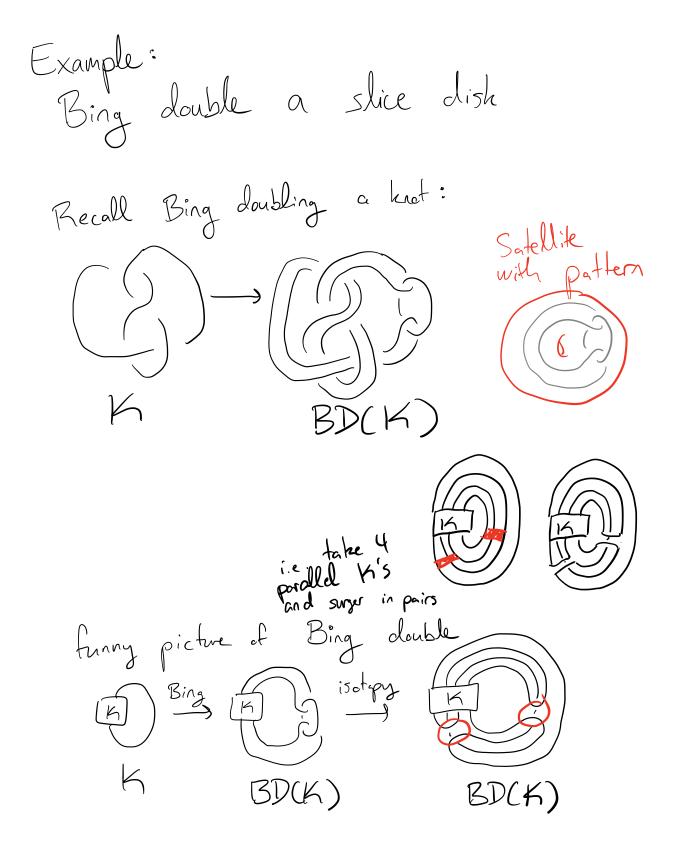
Hayden: Here exist pairs of exotic dishs JMZ: there exist infinite families of pairwise exotic positive genus surfaces Q Does there exist an infinite family of poirwise exotic disks in B'? New direction: focus on multiple component surfaces and exhibit increasingly subtle forms of exotica.

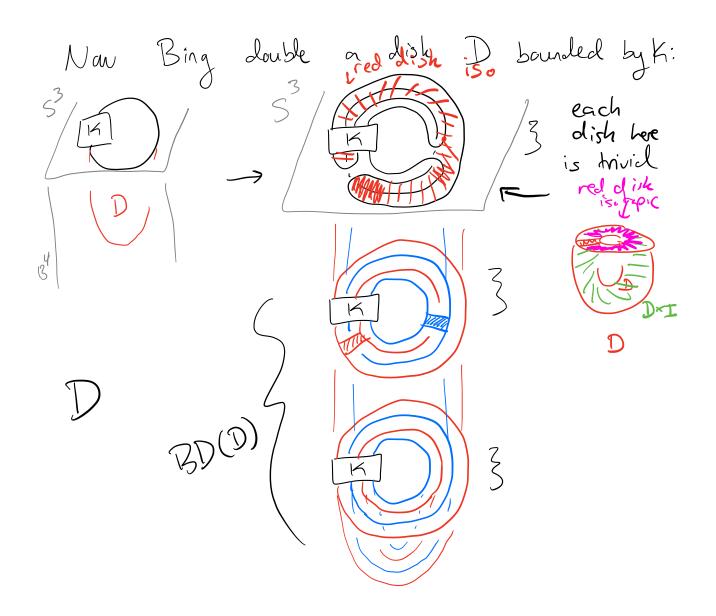
Def A multi-component link is Brunnian if removing any one component yields an unlink.



Def A surface link is a disjoint union of connected, orientable surfaces, each with one boundary component, properly embedded in B⁴. A surface link is an unlink if it is isotopic to a Seifert surface for an unlink in S^3 O'

How do ne produce examples?

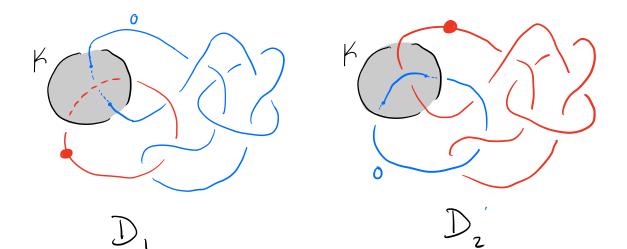


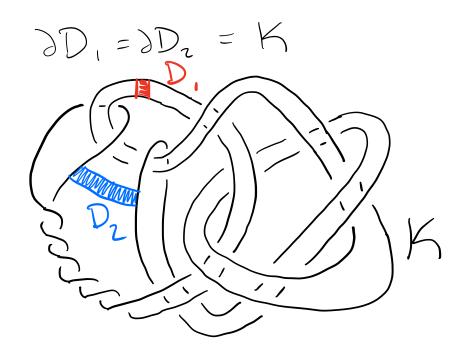


Bing doubling one component of on n-component Brunnian link yields an (n+1)- component Brunnian link.

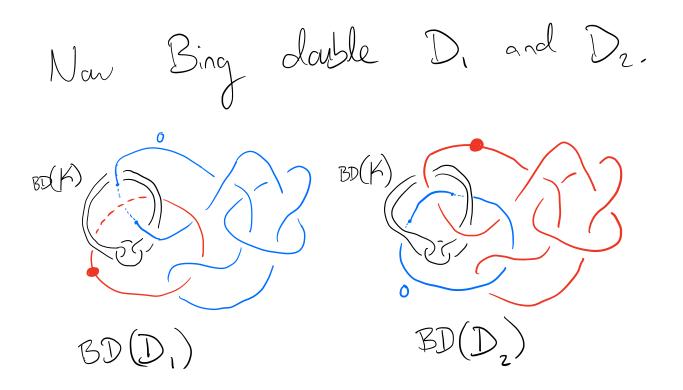
Thm (HKKMPS) For any n>1, there exist exotic orientable n-component Brunnian surface links. 1. There exist exotic pairs of n-component Brunnian disk links.
2. There exist infinite families of pairwise exotic Brunnian surface links with one positive-genus component. Q Does there exist an infinite family of pairwise exotic n-component Brunnian disk links?

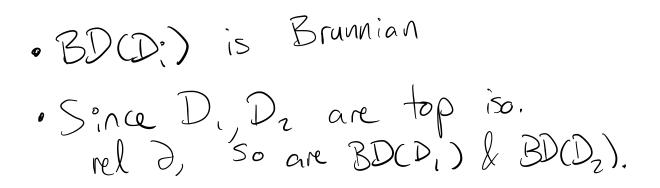
Constructing Brunnian exotic disk links Following Hayden's construction of exotic disks:

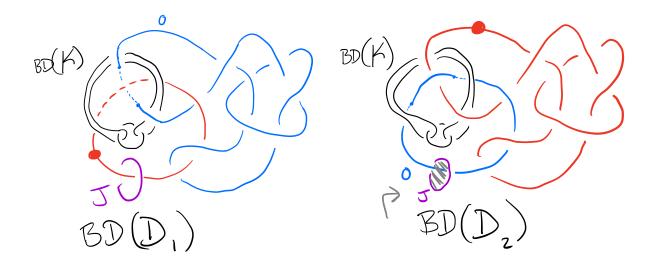




Easy computation: $\pi_1(B^4 \setminus D_1) \cong \pi_1(B^4 \setminus D_2) \cong \mathbb{Z}$ Conway - Paul D'and Dz are topologically isotopic rel boundary.





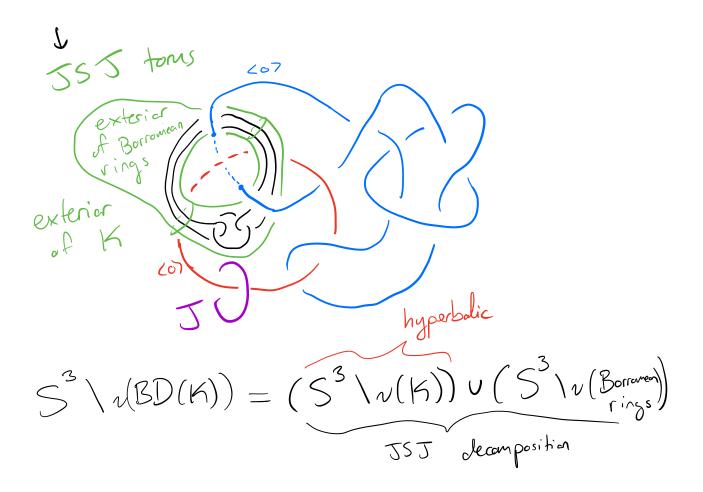


Observe: J is smoothly slice into B'IBD(D2).

Fact: J is not smoothly slice into BY BD(D)) (Redraw diagram as Legendrian and use t.b.)

 $\Rightarrow BD(D_1)$ and $BD(D_2)$ are not Smoothly isotopic rel boundary. Problem: we want to show $\mathcal{G}_{:}(\mathcal{B}',\mathcal{BD}(\mathcal{D}_{1}))\cong(\mathcal{B}',\mathcal{BD}(\mathcal{D}_{2}))$ but to conclude this, neal for know Q(T) = T up to iso.

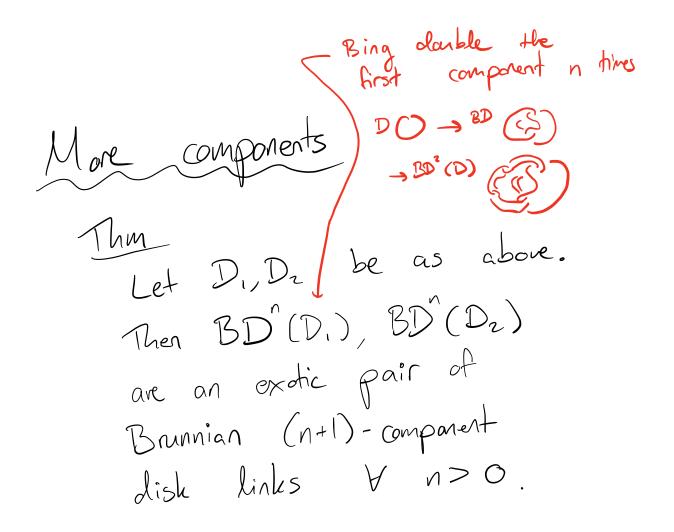
To obstruct smooth equivalence, sufficient to show any homeomorphism $f:(S^3, BD(K))$ 5 preserves J up to isotapy.

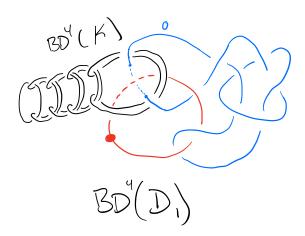


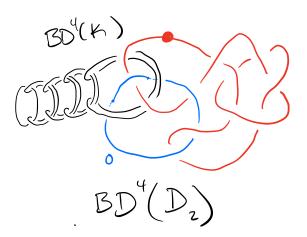
Uniqueness of JSJ decompositions

$$\Rightarrow f$$
 restricts to an automorphism
 d $S^{3} \setminus v(K)$
SnapPea says $D:ff_{+}(S^{3} \setminus v(K)) = 1$
 $\Rightarrow f(J) = J$ up to isotopy.

Carclude BD(D,), BD(Dz) an exotic pair of 2-component Brunnian disk links. (end of n=2, dish case.)



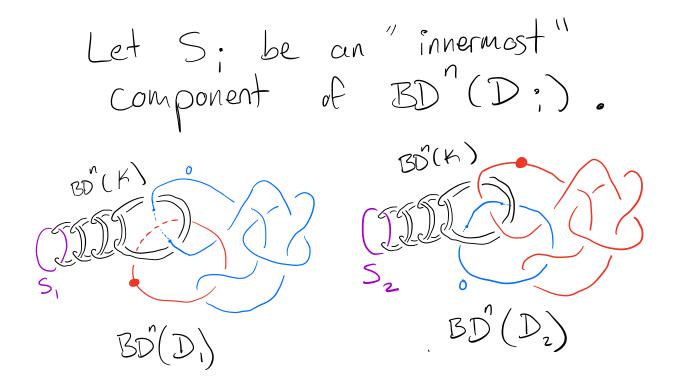




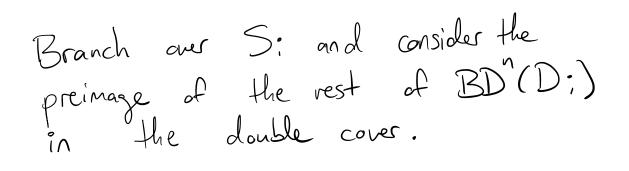
Pf
BD^(D) (D;) is Brunnian
Since D, D2 are top iso.
rel D, so are BD^(D) (D), BD^(D).
Obstruction to smooth equivalence
via induction :

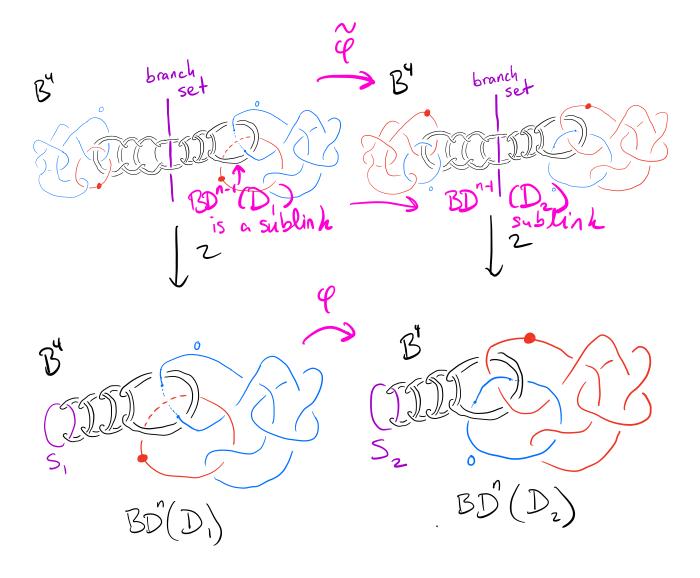
Base case: n=1, just showed BD(D,), BD(D2) not smoothly equivalent

Induct: Assume BDⁿ⁻¹(D₁), BDⁿ⁻¹(D₂) are not smoothly equivalant (n>1).



Since S₁, S₂ are trivial disks, the double branched cover of B⁴ branched over S₁ or S₂ is B⁴.





Note BDⁿ⁻¹(D;) is a sublink of the covering link!

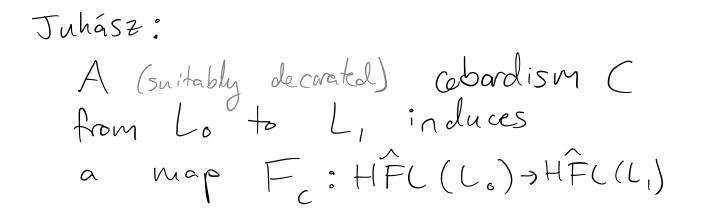
WLOG $f(S_1) = S_2$ (JSJ) =) f lifts to a diffeomorphism of the covering surface links

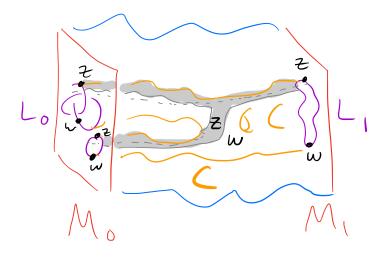
More JSJ stuff f in the car restricts to a diffeo $(B', BD'(D)) \rightarrow (B', BD'(D_z))$ contradicting inductive hypothesis. 网

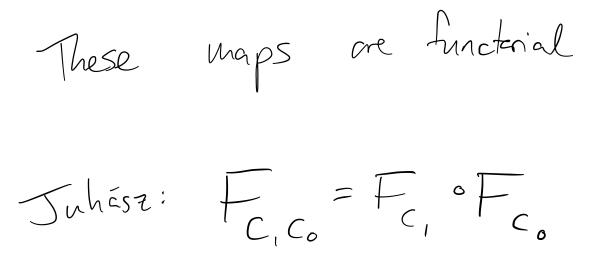
Conclusion: $BD'(D,), BD'(D_2) \sim n$ exotic pair of (n+1)-component Brunnian disk links Hn>0.

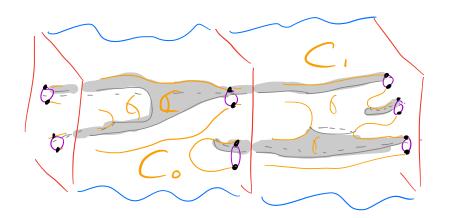
Kecal: we want to construct an infinite family 22n 3n z²⁰ of Brunnian surface links so Zn, Zm are topologically isotopic rel I but not smoothly equivalent V n × m.

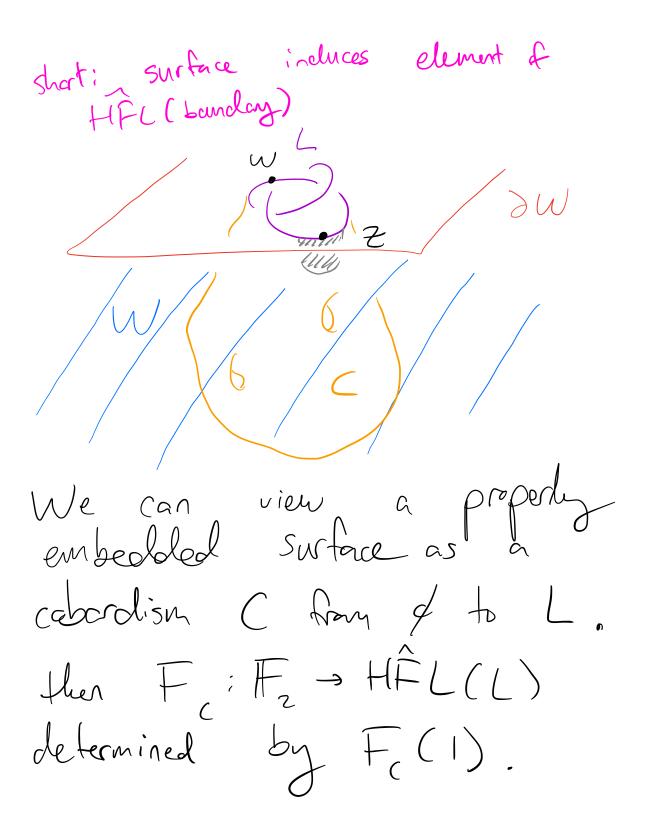
So hav do ve abstruct smooth equivalence of surfaces?

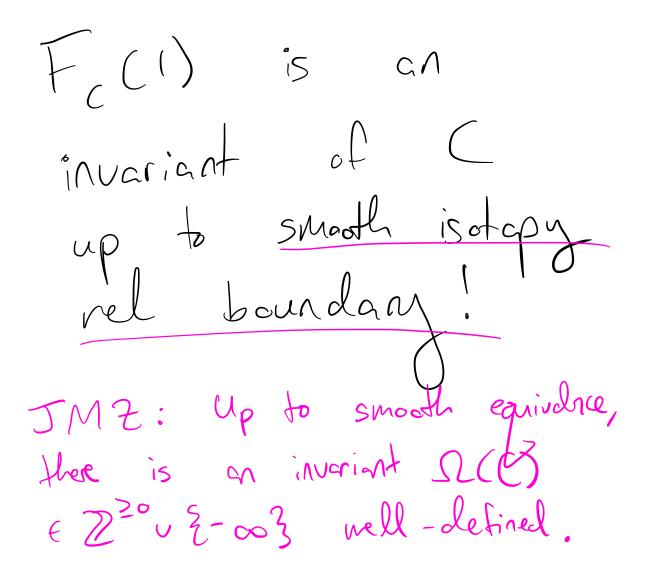








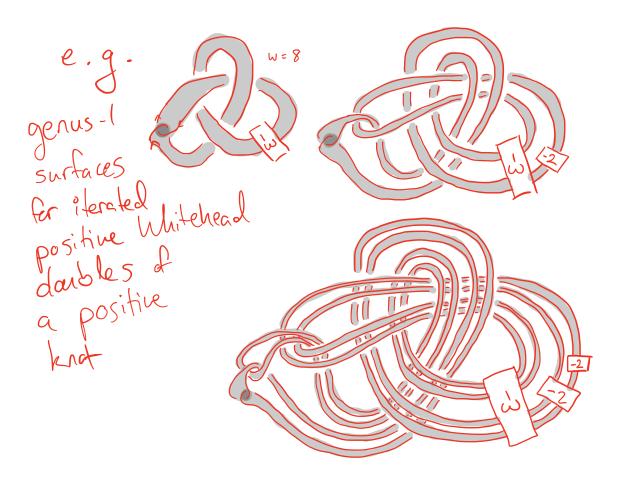


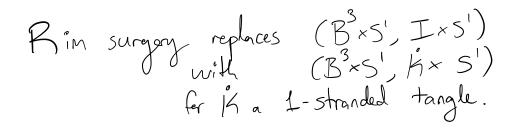


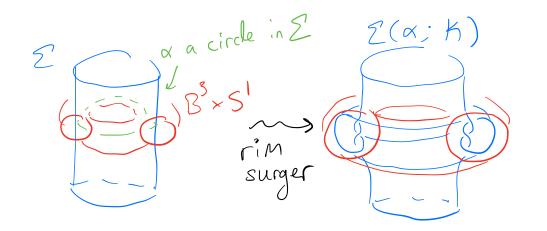
Juhasz - M-Zemke: A diffeomorphism of baundary induces an automorphism of HFL, so Fc(1) might not be preserved. But we can extract numerical invariant R(C) that is. $\frac{1}{(D:B')}$ 6 See JMZ J(JC)=J(for actual definition but

or HKKMPS for $e_{s_3 \neq id}$ some shorter (but less detailed) explanation $\Omega(C) \in \mathbb{Z}^{20} \cup \mathbb{Z}^{-\infty}$

Fc and SL(C) are hard to compute. But fact (JMZ): if C is smoothly isotopic to a stornagly guasipositive Seifert surface, then $F_c(1) \neq O$ $\mathcal{L}(C) = 0$.





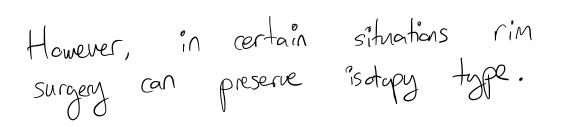


Note this involves choice of not only $\alpha \in \mathbb{Z}$ and K a knot, but also a framing of α .

Juhász-Zemke (
$$\alpha$$
 a non-separating curve)
 $F_{\Xi(\alpha;K)} = \Delta_{K}(z) F_{\Xi}$
Alexander
polynamid
 $\Rightarrow \Omega(\Sigma(\alpha;K)) = \Omega(\Sigma) + \#$ irreducible
foctors of
 $\Delta_{K} W$
multiplicity

Gonclude:
IF F_{84,2} ≠ O and K₁, K₂ knots:
F³⁷_{84,2} ≠ O and K₁, K₂ knots:
F³⁷_{84,2} → F
- IF J_{K1} ≠ J_{K2}, then

$$\Sigma(\alpha; K_1)$$
 and $\Sigma(\alpha; K_2)$ not
smoothly isotopic rel boundary.
- IF J_{K1}, J_{K2} have different
numbers of irreducible factors
then $\Sigma(\alpha; K_1)$ and $\Sigma(\alpha; K_2)$ not
smoothly equivalent! $\Omega \rightarrow \Omega^{-1}$

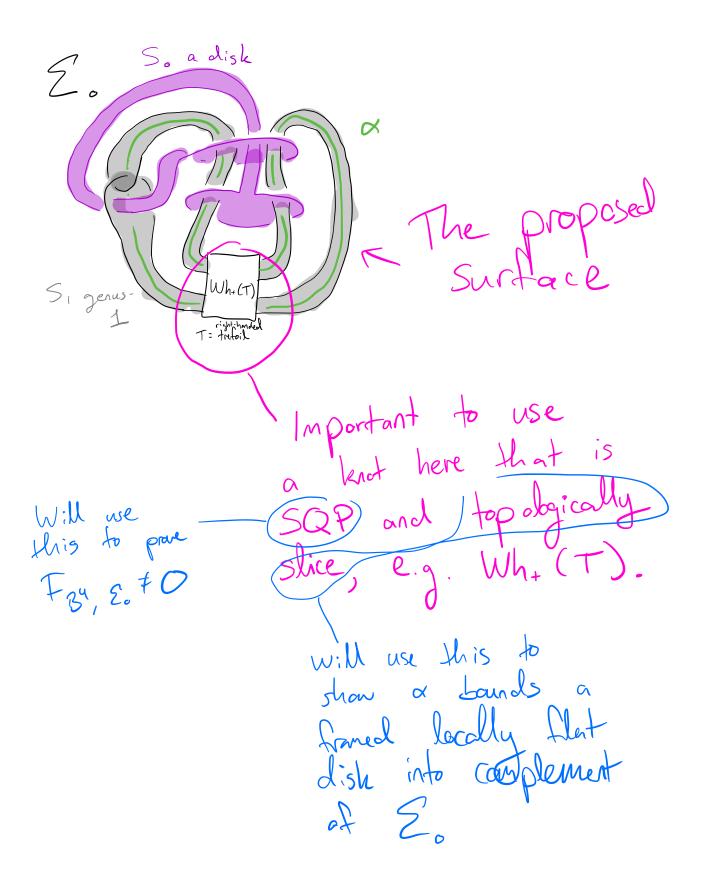


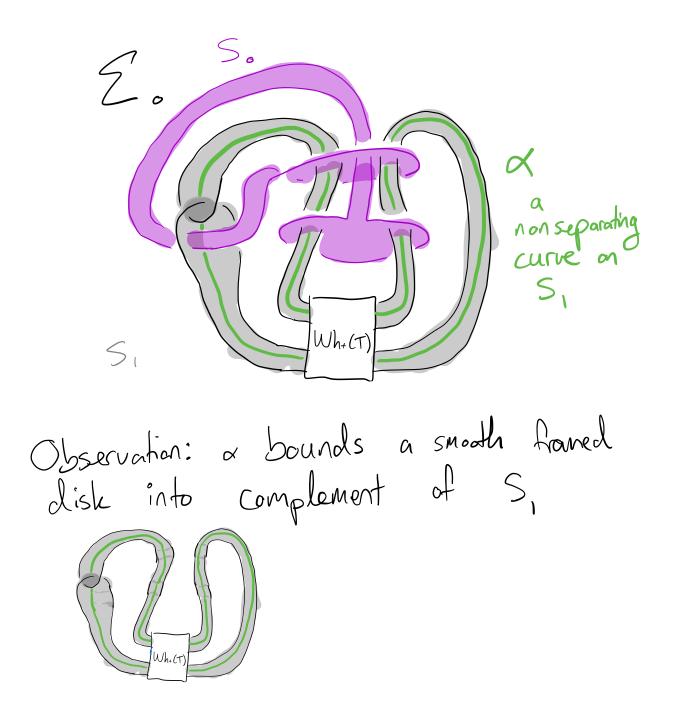
Now to construct infinit family
of Brunnian pairwise exotic surfaces
$$\{Z_n\}_{n>0}$$

need the following:
- $\mathcal{E}_{\cdot} = S_{\cdot} \cup S_{\cdot}$ a Brunnian surface
with $F_{B^{4}, \mathcal{E}_{\cdot}} \neq \mathcal{O}$.
- $\alpha \subset S_{\cdot}$ a nonseparating curve
 α bounds a Pramed
- smooth disk into complement
of S_{\cdot} .
- $\log Cally flat disk intocomplement of $S_{\cdot} \cup S_{\cdot}$.$

Then set
$$\Sigma_n = \Sigma_0(\alpha; \#(Trefoil))$$

.

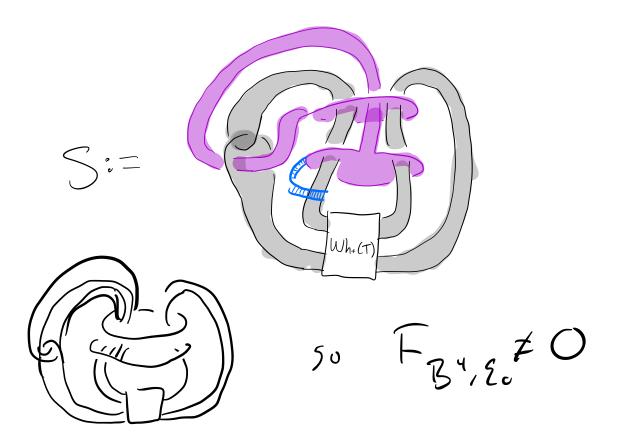




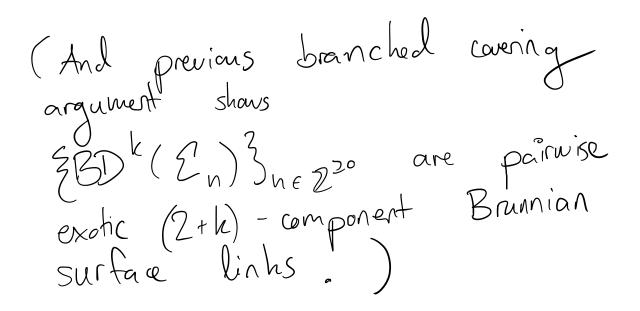
Another observation: Since Wh+(T) is top slice, & bounds a Locally Flat framed disk into complement à Z=Sous,. Glue these two locally flat disks together Wh+(T Wh+(T

Our 2. can't be SQP since S, compressible, but since HFL: DLink-> Vect factorial, if we show E. is a factor of an SQP surface we'll know $F_{B^4, \mathcal{Z}_0} \neq O$

Final observation: IF we glue So, S, along this band, we get SQPET surface for Wh+ (Wh+ (Right-handed trefoil))).



Conclude: ZEngnezzo are pairwise exotic 2-component Brunnian surface links.



Open problems 1. Find infinite family of pairwise exotic disks in B⁴ 2. Find infinite family of pairwise exotic Brunnian 2-component disk links in B4 (Almost surely you can then extend this to n>2 - component via Bing doubling) 3. Find an exotic pair of orientable surfaces in S⁴