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Notation and main statement

Let Σ be a closed, connected, oriented surface of genus g ≥ 1. We
define the mapping class group Mod(Σ) = Diff+(Σ)/Diff+

0 (Σ)
and the character variety

X (Σ) = Hom(π1(Σ),SL2(C))//SL2(C)

which as a topological space is the space of equivalence classes of
representations ρ : π1(Σ)→ SL2(C) where
ρ1 ∼ ρ2 ⇐⇒ Tr ρ1(γ) = Tr ρ2(γ) for all γ ∈ π1(Σ).

The group Mod(Σ) ' Out(π1(Σ) acts on X (Σ) via
φ.[ρ] = [ρ ◦ φ−1]. This action is still not completely understood
(for instance we don’t know its ergodic components). The main
purpose of this talk is to explain the proof of the following
Theorem [M-S]: If g ≥ 3, the automorphism group of the
character variety is a finite extensions of Mod(Σ).
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Algebraic structure

The character variety is an affine algebraic variety and by
automorphism we mean automorphisms of this structure. This
structure is completely described by the algebra of regular
functions on X (Σ) whose typical element is the trace function tγ
for γ ∈ π1(Σ) mapping [ρ] to Tr ρ(γ).

Theorem [Procesi ’70]: The algebra of regular functions on
X (Σ) is

C[X (Σ)] = C[tγ , γ ∈ π1(Σ)]/(t1 − 2, tγtδ − tγδ − tγδ−1).

For people wo know, this is Kauffman skein algebra at A = −1.
So that we reformulate our statement as follows:
Theorem V2: There exists an exact sequence

0→ H1(Σ,Z/2Z)→ Autalg(C[X (Σ)])→ Mod(Σ)→ 0.

where λ : π1(Σ)→ {±1} maps tγ to λ(γ)tγ .
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Context: rigidity of mapping class group actions

There is a long list of similar statements: Mod(Σ) is the group of

1. biholomorphisms of the Teichmüller space.

2. isometries of the Teichmüller space w.r.t the Weil-Petersen
metric.

3. homeomorphisms of the space of measured laminations
preserving the intersection pairing.

4. automorphisms of the curve complex.

Our proof is indeed a reduction to the last statement, recalled
below.
Let C be the graph whose vertices are isotopy classes of non-trivial
simple curves and edges correspond to disjoint non-parallel curves.
Theorem [Ivanov 1990]: The automorphism group of the graph
C is Mod(Σ).
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Context: compactification of character variety

The proof consists in studying Morgan-Shalen like compactification
of X (Σ). Recall that the Teichmüller space is a component of the
real part of X (Σ) and that its most famous compactification is
Thuston boundary sphere of projective measured laminations
(homeomorphic to S6g−7).

The main step of the proof is to provide a natural compactification
extending Thurston’s such that automorphisms preserve
Thurston’s boundary.
My initial motivation was to compute the dual boundary complex
of X (Σ) defined as follows. Take a ’smooth’ projective
compactification X of X (Σ) such that X \ X (Σ) =

⋃
i∈I Di where

Di are normal crossing divisors.
The dual boundary complex is a simplicial complex whose points
are indexed by I and simplices correspond to J ⊂ I such that⋂

j∈J Dj 6= ∅.
Conjecture: This simplicial complex is homotopic to S6g−7.
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Valuations

We define a set V of all functions v : C[X (Σ)]→ {−∞}∪ [0,+∞)
satisfying for all f , g ∈ C[X (Σ)]:

1. v(f ) = −∞ ⇐⇒ f = 0.

2. v(fg) = v(f ) + v(g).

3. v(f + g) ≤ max(v(f ), v(g)).

The group Aut(C[X (Σ)] acts on V which we endow with the
topology of pointwise convergence.

Replacing C[X (Σ)] with the simpler algebra C[x1, . . . , xn] we
define monomial valuations by setting v(xi ) = vi ∈ R and

v
(∑

α

cαx
α1
1 · · · x

αn
n

)
= max

{∑
viαi s.t. cα 6= 0

}
.

To define an analogous notion for character varieties, we replace
’monomial’ by ’multicurves’.
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Simple valuations
First observe that tαγα−1 = tγ hence tγ only depends on the free
homotopy class of γ.
A multicurve Γ is a submanifold of Σ without components
bounding a disc. For such Γ =

⋃
i∈I γi we set tΓ =

∏
i∈I tγi (and

t∅ = 1).

Theorem (Bullock,Przytycki-Sikora): The set of tΓ’s for all
isotopy classes of multicurves on Σ is a linear basis of C[X (Σ)].
Idea of proof

1. Show by induction on the number of crossing points that tΓ is
a spanning set by using trace relations.

2. Use Reidemeister moves to show that the expansion of tγ as a
linear combination of tΓ is well-defined.

A valuation v ∈ V is said simple if it satisfies for all
f =

∑
Γ cΓtΓ ∈ C[X (Σ)] \ {0}:

v(f ) = max{v(tΓ) s.t. cΓ 6= 0}.
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Measured laminations as simple valuations

Given a simple curve δ, define vδ(tγ) = i(δ, γ) and extend it as

v(
∑

Γ

cΓtΓ) = max{i(δ, Γ) s.t. cΓ 6= 0}.

It is a non-obvious fact that this actually defines an element of V.
The proof (not the statement) appears in the preprint Geometric
intersection of curves on surfaces by D. Thurston.

The closure in V of the set of positive multiples of vδ for δ simple
is - following W. Thurston - the set of measured laminations on Σ,
denoted by ML.
As the condition of being simple is closed, we deduce that ML is
included in the set of simple valuations. I believe that our most
interesting result is the following equivalence:
Theorem M-S: The simple valuations are the one associated to
measured laminations.
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Untameable valuations

Now that we have seen that ML ⊂ V, the main step in the proof of
Theorem 1 is to show that Aut(C[X (Σ)]) preserves ML.
This is not clear: what is clear is that it preserves the set of
untameable valuations v which by definition satisfy

v ≤ w ⇐⇒ w = Cv for some C ≥ 1

where v ≤ w means v(f ) ≤ w(f ) for all f ∈ C[X (Σ)].

We will prove that

1. Any untameable valuation is in ML (uses Morgan-Otal-Skora
theorem, see next proposition).

2. Almost all valuations in ML are untameable.

The second statement is equivalent to a theorem of Masur stating
that almost all measured laminations are uniquely ergodic.
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Domination of valuations by measured laminations
Theorem : For any v ∈ V there exists a unique measured
lamination λ ∈ ML such that v ≤ vλ and v(tγ) = vλ(tγ) = i(λ, γ)
for all γ ∈ π1(Σ).

Sketch of proof

1. Let K = C(X (Σ)) and ρ : π1(Σ)→ SL2(K ) be the
tautological representation satisfying Tr ρ(γ) = tγ (Cheat)
and v : K ∗ → R defined by v( f

g ) = v(f )− v(g). The
Bass-Serre tree associated to (K , v) is a real tree Tv on which
π1(Σ) acts via ρ.

2. Morgan-Otal theorem (a real version of Stallings theorem
associating dual curves to action on trees) says that there
exists a measured lamination λ with an equivariant
contracting map Φ : Tλ → Tv .
This shows that for any γ ∈ π1(Σ), the translation length of
the action of γ on Tv is less than the corresponding one on
Tλ. In formula

max(0, 2v(tγ)) ≤ vλ(tγ) = 2i(λ, γ).
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Preuve de la domination

3. For any f =
∑

Γ cΓtΓ ∈ C[X (Σ)] we have

v(f ) ≤
valuation

max{v(tΓ)} ≤
Point2.

1

2
max{vλ(tΓ)} =

simple

1

2
vλ(f ).

4. If the equality v(tγ) = 1
2vλ(tγ) does not hold, Φ : Tλ → Tv is

not an isometry on its image. By Skora’s theorem, there exists
an edge of Tv whose stabiliser contains a free subgroup
〈α, β〉. One shows that v(t[α,β] − 2) < 0: a contradiction.

Corollary:

1. If v is simple and λ is such that v coincide with vλ on tγ then
v = vλ i.e. v ∈ ML.

2. If v is untameable, v ≤ vλ implies v = Cvλ i.e. v ∈ ML.
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Reduction to Ivanov’s theorem

Once we know that Aut(X (Σ)) preserves ML, it also preserves

MLZ = {λ ∈ ML, vλ(tγ) = i(λ, γ) ∈ N ∀γ ∈ π1(Σ)}

which correspond to (half-weighted) multi curves. This shows that
AutX (Σ) acts on C where we identify γ ∈ C with vγ .

To apply Ivanov’s theorem, it remains to prove that Aut(X (Σ))
maps disjoint curves to disjoint curves. To that aim we introduce
the positive valuation ring

O+
γ = {f ∈ C[X (Σ)] s.t. vγ(f ) = 0}

= Im(C[X (Σ \ γ)]→ C[X (Σ)]).

Proposition: For non-parallel simple curves γ, δ one has

dimO+
γ ∩ O+

δ ≤ dimX (Σ)− 2

with equality if and only if γ and δ are disjoint.
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End of the proof

Applying Ivanov’s theorem, any automorphism φ of X (Σ) acts on
C as an element Φ ∈ Mod(Σ). The surjection φ 7→ Φ gives the
map on the right in the sequence

0→ H1(Σ,Z/2Z)→ Aut(X (Σ))→ Mod(Σ)→ 0.

We are reduced to considering automorphisms φ such that
vγ ◦ φ = vγ for all γ simple. This implies that φ(tγ) ∈ C[tγ ].
As φ is an automorphism, one has φ(tγ) = aγtγ + bγ . Checking
some trace relations gives bγ = 0 and aγ = λ(γ) for some
morphism λ : π1(Σ)→ {±1}, proving the result.
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Connection to the dual boundary complex

Let us compute an example of dual boundary complex for a
punctured surface. We consider the character variety of a
punctured torus Σ whose boundary element has trace λ ∈ C.

Writing π1(Σ) = 〈α, β〉 and x = tα, y = tβ, z = tαβ, the boundary
condition reads

x2 + y2 + z2 − xyz − 2 = λ.

Compactifying in P3 gives as boundary the divisors xyz = 0 in P2.
The dual complex is a triangle, homotopic to a circle, as the
boundary of the Teichmüller space of the punctured torus.

In the general case, the dual boundary complex is homotopic to
the projectivization of the space of all valuations
v : C[X (Σ)]→ {−∞} ∪ R. The conjecture would follow if one
shows that this space retracts on PML.
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