

A homological model for quantum Verma modules and braid groups representations

Jules Martel

Thursday april 30th

[K-OS] seminar

Definition (Braid groups)

Let \mathcal{B}_n denote the group of braids with $n \in \mathbb{N}$ strands.

Definition (Braid groups)

Let \mathcal{B}_n denote the group of braids with $n \in \mathbb{N}$ strands.

•
$$\mathcal{B}_n = \left\langle \sigma_1, \dots, \sigma_{n-1} \middle| \begin{array}{ll} \sigma_i \sigma_j = \sigma_j \sigma_i & \text{if } |i-j| \leq 2 \\ \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1} & \text{for } i = 1, \dots, n-2 \end{array} \right\rangle$$

Definition (Braid groups)

Let \mathcal{B}_n denote the group of braids with $n \in \mathbb{N}$ strands.

•
$$\mathcal{B}_n = \left\langle \sigma_1, \dots, \sigma_{n-1} \middle| \begin{array}{ll} \sigma_i \sigma_j = \sigma_j \sigma_i & \text{if } |i-j| \leq 2 \\ \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1} & \text{for } i = 1, \dots, n-2 \end{array} \right\rangle$$

• Let D_n be the disk with n punctures

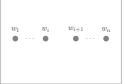
Definition (Braid groups)

Let \mathcal{B}_n denote the group of braids with $n \in \mathbb{N}$ strands.

•
$$\mathcal{B}_n = \left\langle \sigma_1, \dots, \sigma_{n-1} \middle| \begin{array}{ll} \sigma_i \sigma_j = \sigma_j \sigma_i & \text{if } |i-j| \leq 2 \\ \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1} & \text{for } i = 1, \dots, n-2 \end{array} \right\rangle$$

• Let D_n be the disk with n punctures, the group \mathcal{B}_n is the mapping class group of D_n :

$$\mathcal{B}_n = Mod(D_n).$$



Definition (Braid groups)

Let \mathcal{B}_n denote the group of braids with $n \in \mathbb{N}$ strands.

•
$$\mathcal{B}_n = \left\langle \sigma_1, \dots, \sigma_{n-1} \middle| \begin{array}{ll} \sigma_i \sigma_j = \sigma_j \sigma_i & \text{if } |i-j| \leq 2 \\ \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1} & \text{for } i = 1, \dots, n-2 \end{array} \right\rangle$$

• Let D_n be the disk with n punctures, the group \mathcal{B}_n is the mapping class group of D_n :

$$\mathcal{B}_n = Mod(D_n).$$

$$_{i}$$
 \longleftrightarrow half Dehn-tv

Let $U_q\mathfrak{sl}(2)$ be the quantized enveloping algebra of $\mathfrak{sl}(2).$

$$D_n$$
:

Let $U_q\mathfrak{sl}(2)$ be the quantized enveloping algebra of $\mathfrak{sl}(2).$

Input: $U_q\mathfrak{sl}(2)$ + modules

Quantum rep. of braids (\sim 1985)

$$D_n$$
:

Let $U_q\mathfrak{sl}(2)$ be the quantized enveloping algebra of $\mathfrak{sl}(2)$.

Input:
$$U_q\mathfrak{sl}(2) + modules$$

Quantum rep. of braids (
$$\sim$$
 1985) $\xrightarrow{\text{Reshetikhin}-\text{Turaev}}$ Knot invariants

$$D_n$$
:

Let $U_q\mathfrak{sl}(2)$ be the quantized enveloping algebra of $\mathfrak{sl}(2)$.

Input:
$$U_q\mathfrak{sl}(2) + modules$$

Quantum rep. of braids (
$$\sim$$
 1985) $\xrightarrow{\text{Reshetikhin}-\text{Turaev}}$ Knot invariants

Jones polynomial

$$D_n$$
:

Let $U_q\mathfrak{sl}(2)$ be the quantized enveloping algebra of $\mathfrak{sl}(2)$.

Input: $U_q\mathfrak{sl}(2) + modules$

Quantum rep. of braids (
$$\sim$$
 1985) $\xrightarrow{\text{Reshetikhin}-\text{Turaev}}$ Knot invariants

Lawrence rep. of braids (\sim 1990)

Jones polynomial

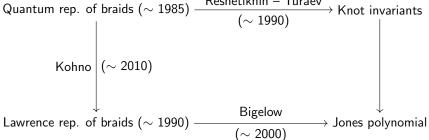
$$D_n$$
:

Let $U_q\mathfrak{sl}(2)$ be the quantized enveloping algebra of $\mathfrak{sl}(2)$.

Input:
$$U_q\mathfrak{sl}(2) + modules$$

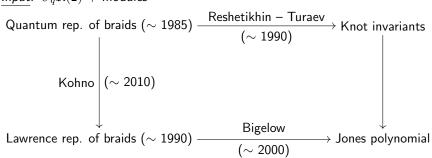
Quantum rep. of braids (
$$\sim$$
 1985) $\xrightarrow{\text{Reshetikhin}-\text{Turaev}}$ Knot invariants

Let $U_q\mathfrak{sl}(2)$ be the quantized enveloping algebra of $\mathfrak{sl}(2)$.



Let $U_q\mathfrak{sl}(2)$ be the quantized enveloping algebra of $\mathfrak{sl}(2)$.

Input:
$$U_q\mathfrak{sl}(2) + modules$$



Let $U_q\mathfrak{sl}(2)$ be the quantized enveloping algebra of $\mathfrak{sl}(2)$.

Input:
$$U_q\mathfrak{sl}(2) + modules$$

Quantum rep. of braids (
$$\sim$$
 1985) $\xrightarrow{\text{Reshetikhin - Turaev}}$ Knot invariants (\sim 1990) $\xrightarrow{\text{Kohno}}$ (\sim 2010) $\xrightarrow{\text{Bigelow}}$ Jones polynomial (\sim 2000)

The present work extends these relations.

Plan:

- Prerequisite of quantum algebra
- Momology of configuration spaces of points
- 3 Structure of the homology
- 4 Homological representations and results

Prerequisite of quantum algebra

2 Homology of configuration spaces of points

- Structure of the homology
- 4 Homological representations and results

 $U_q\mathfrak{sl}(2)$

Definition

 $U_q\mathfrak{sl}(2)$ is the $\mathbb{Q}(q)$ -algebra generated by elements E,F and $K^{\pm 1}$, satisfying the following relations:

$$KEK^{-1} = q^2E, KFK^{-1} = q^{-2}F$$

$$[E, F] = \frac{K - K^{-1}}{q - q^{-1}}, \ KK^{-1} = K^{-1}K = 1.$$

 $U_q\mathfrak{sl}(2)$

Definition

 $U_q\mathfrak{sl}(2)$ is the $\mathbb{Q}(q)$ -algebra generated by elements E,F and $K^{\pm 1}$, satisfying the following relations:

$$KEK^{-1} = q^2E, KFK^{-1} = q^{-2}F$$

$$[E, F] = \frac{K - K^{-1}}{q - q^{-1}}, \ KK^{-1} = K^{-1}K = 1.$$

Proposition (Hopf algebra structure)

Endowed with the coproduct structure (+ extra algebraic structure), $U_q\mathfrak{sl}(2)$ becomes a Hopf algebra

 $U_q\mathfrak{sl}(2)$

Definition

 $U_q\mathfrak{sl}(2)$ is the $\mathbb{Q}(q)$ -algebra generated by elements E,F and $K^{\pm 1}$, satisfying the following relations:

$$KEK^{-1} = q^2E, KFK^{-1} = q^{-2}F$$

$$[E, F] = \frac{K - K^{-1}}{q - q^{-1}}, \ KK^{-1} = K^{-1}K = 1.$$

Proposition (Hopf algebra structure)

Endowed with the coproduct structure (+ extra algebraic structure), $U_q\mathfrak{sl}(2)$ becomes a Hopf algebra so that its category of module is monoidal.

Integral version

Let $\mathcal{R}_0 = \mathbb{Z}\left[q^{\pm 1}\right]$ be the ring of integral Laurent polynomials in the variable q.

Integral version

Let $\mathcal{R}_0 = \mathbb{Z}\left[q^{\pm 1}\right]$ be the ring of integral Laurent polynomials in the variable q.

Definition (Half integral version)

Let $U_q^{\frac{L}{2}}\mathfrak{sl}(2)$ be the \mathcal{R}_0 -subalgebra of $U_q\mathfrak{sl}(2)$ generated by E, $K^{\pm 1}$ and $F^{(n)}$ for $n\in\mathbb{N}^*$,

Integral version

Let $\mathcal{R}_0 = \mathbb{Z}\left[q^{\pm 1}\right]$ be the ring of integral Laurent polynomials in the variable q.

Definition (Half integral version)

Let $U_q^{\frac{L}{2}}\mathfrak{sl}(2)$ be the \mathcal{R}_0 -subalgebra of $U_q\mathfrak{sl}(2)$ generated by E, $K^{\pm 1}$ and $F^{(n)}$ for $n\in\mathbb{N}^*$, where:

$$F^{(n)} = \frac{(q - q^{-1})^n}{[n]_q!} F^n$$

are the divided powers of F.

Notations for quantum numbers

$$[n]_q = \frac{q^n - q^{-n}}{q - q^{-1}}, \text{ and } [n]_q! = [n]_q [n-1]_q \cdots [1]_q$$

Verma modules

Let
$$\mathcal{R}_1 = \mathbb{Z}\left[q^{\pm 1}, q^{\pm lpha}\right]$$
.

Verma modules

Let
$$\mathcal{R}_1 = \mathbb{Z}\left[q^{\pm 1}, q^{\pm \alpha}\right]$$
.

Definition (Verma module)

The Verma module V^{α} is the infinite \mathcal{R}_1 -module generated by vectors $\{v_0,v_1\ldots\}$, and endowed with the following action of $U_q^{\frac{L}{2}}\mathfrak{sl}(2)$:

$$K \cdot v_j = q^{\alpha - 2j} v_j$$
 and $E \cdot v_j = v_{j-1} \ (v_{-1} := 0)$

$$F^{(n)} \cdot v_j = \left(\left[\begin{array}{c} n+j \\ j \end{array} \right]_q \prod_{k=0}^{n-1} \left(q^{\alpha-k-j} - q^{-\alpha+j+k} \right) \right) v_{j+n}.$$

Verma modules

Let
$$\mathcal{R}_1 = \mathbb{Z}\left[q^{\pm 1}, q^{\pm \alpha}\right]$$
.

Definition (Verma module)

The Verma module V^{α} is the infinite \mathcal{R}_1 -module generated by vectors $\{v_0,v_1\ldots\}$, and endowed with the following action of $U_q^{\frac{L}{2}}\mathfrak{sl}(2)$:

$$K \cdot v_j = q^{\alpha - 2j} v_j$$
 and $E \cdot v_j = v_{j-1} \ (v_{-1} := 0)$

$$F^{(n)} \cdot v_j = \left(\left[\begin{array}{c} n+j \\ j \end{array} \right] \prod_{k=0}^{n-1} \left(q^{\alpha-k-j} - q^{-\alpha+j+k} \right) \right) v_{j+n}.$$

K is diagonal, v_i is said to have weight $\alpha - 2j$.

Proposition (Quantum braid action)

There exists a representation:

$$Q: \mathcal{R}_1\left[\mathcal{B}_n\right] \to \operatorname{End}_{\mathcal{R}_1}$$

$$\left((V^{\alpha})^{\otimes n} \right)$$

Proposition (Quantum braid action)

There exists a representation:

$$Q: \mathcal{R}_1[\mathcal{B}_n] \to \operatorname{End}_{\mathcal{R}_1, U_q^{\frac{L}{2}} \mathfrak{sl}(2)} \left((V^{\alpha})^{\otimes n} \right)$$

Proposition (Quantum braid action)

There exists a representation:

$$Q: \mathcal{R}_1[\mathcal{B}_n] \to \operatorname{End}_{\mathcal{R}_1, U_q^{\frac{L}{2}}\mathfrak{sl}(2)} \left((V^{\alpha})^{\otimes n} \right)$$

Definition

For $r \in \mathbb{N}$, following spaces are sub-representations of \mathcal{B}_n .

- "sub-weight r": $W_{n,r} = Ker(K q^{n\alpha 2r})$.
- "highest weight": $Y_{n,r} = W_{n,r} \cap Ker E \subset W_{n,r}$.

$$D_n$$
:

$$(V^{\alpha})^{\otimes n} \simeq_{\mathcal{B}_n} \bigoplus_{r \in \mathbb{N}} W_{n,r}$$

Braid representations

Proposition (Quantum braid action)

There exists a representation:

$$Q: \mathcal{R}_1[\mathcal{B}_n] \to \operatorname{End}_{\mathcal{R}_1, U_q^{\frac{L}{2}} \mathfrak{sl}(2)} \left((V^{\alpha})^{\otimes n} \right)$$

Definition

For $r \in \mathbb{N}$, following spaces are sub-representations of \mathcal{B}_n .

- "sub-weight r": $W_{n,r} = Ker(K q^{n\alpha 2r})$.
- "highest weight": $Y_{n,r} = W_{n,r} \cap Ker E \subset W_{n,r}$.

$$(V^{\alpha})^{\otimes n} \simeq \bigoplus_{r \in \mathbb{N}} W_{n,r}$$

9/29

$$D_n$$
 :

$$(V^{\alpha})^{\otimes n} \simeq_{\mathcal{B}_n} \bigoplus_{r \in \mathbb{N}} W_{n,r}$$

$$W_{n,r-1} \underbrace{\overset{E}{\bigvee}}_{F^{(1)}} W_{n,r} \hookleftarrow Y_{n,r}$$

Braid representations

Proposition (Quantum braid action)

There exists a representation:

$$Q: \mathcal{R}_1\left[\mathcal{B}_n\right] \to \operatorname{End}_{\mathcal{R}_1, U_q^{\frac{L}{2}}\mathfrak{sl}(2)} \left(\left(V^{\alpha}\right)^{\otimes n}\right)$$

Definition

For $r \in \mathbb{N}$, following spaces are sub-representations of \mathcal{B}_n .

- "sub-weight r": $W_{n,r} = Ker(K q^{n\alpha 2r})$.
- "highest weight": $Y_{n,r} = W_{n,r} \cap Ker E \subset W_{n,r}$.

$$(V^{lpha})^{\otimes n} \simeq \bigoplus_{r \in \mathbb{N}} W_{n,r} \text{ s.t. } W_{n,r-1} \underbrace{\sum_{F^{(1)}}^{E} W_{n,r}}_{F^{(1)}}$$

$$D_n$$
:

$$(V^{\alpha})^{\otimes n} \simeq_{\mathcal{B}_n} \bigoplus_{r \in \mathbb{N}} W_{n,r}$$

$$W_{n,r-1} \underbrace{F^{(1)}}^{E} W_{n,r} \hookleftarrow Y_{n,r}$$

Prerequisite of quantum algebra

Momology of configuration spaces of points

Structure of the homology

4 Homological representations and results

$$(V^{\alpha})^{\otimes n} \simeq_{\mathcal{B}_n} \bigoplus_{r \in \mathbb{N}} W_{n,r}$$

$$W_{n,r-1} \underbrace{\overset{E}{\bigvee}}_{F^{(1)}} W_{n,r} \longleftrightarrow Y_{n,r}$$

Configuration space

Definition (Configuration space of points in the punctured disk)

$$D_n$$
:

$$(V^{\alpha})^{\otimes n} \simeq_{\mathcal{B}_n} \bigoplus_{r \in \mathbb{N}} W_{n,r}$$

$$W_{n,r-1} \underbrace{\stackrel{E}{\bigvee}}_{F^{(1)}} W_{n,r} \longleftrightarrow Y_{n,r}$$

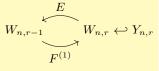
Configuration space

Definition (Configuration space of points in the punctured disk)

Let D_n be the disk with n punctures.

$$D_n$$
:

$$(V^{\alpha})^{\otimes n} \simeq_{\mathcal{B}_n} \bigoplus_{r \in \mathbb{N}} W_{n,r}$$



Configuration space

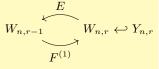
Definition (Configuration space of points in the punctured disk)

Let D_n be the disk with n punctures.

$$X_r = \{(z_1, \dots, z_r) \in (D_n)^r \text{ s.t. } z_i \neq z_j \forall i, j\}$$

$$D_n$$
:

$$(V^{\alpha})^{\otimes n} \simeq_{\mathcal{B}_n} \bigoplus_{r \in \mathbb{N}} W_{n,r}$$



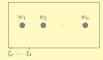
Configuration space

Definition (Configuration space of points in the punctured disk)

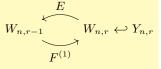
Let D_n be the disk with n punctures.

$$X_r = \left\{ (z_1, \dots, z_r) \in (D_n)^r \text{ s.t. } z_i \neq z_j \forall i, j \right\} / \mathfrak{S}_r$$

$$D_n$$
:



$$(V^{\alpha})^{\otimes n} \simeq_{\mathcal{B}_n} \bigoplus_{r \in \mathbb{N}} W_{n,r}$$



Configuration space

Definition (Configuration space of points in the punctured disk)

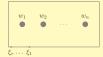
Let D_n be the disk with n punctures.

$$X_r = \left\{ (z_1, \dots, z_r) \in (D_n)^r \text{ s.t. } z_i \neq z_j \forall i, j \right\} / \mathfrak{S}_r$$

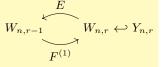
Remark (Mixed braid group)

$$\pi_1(X_r, \boldsymbol{\xi_r}) \subset \mathcal{B}_{r+n}$$

$$D_n$$
:



$$(V^{\alpha})^{\otimes n} \simeq_{\mathcal{B}_n} \bigoplus_{r \in \mathbb{N}} W_{n,r}$$



Configuration space

Definition (Configuration space of points in the punctured disk)

Let D_n be the disk with n punctures.

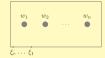
$$X_r = \left\{ (z_1, \dots, z_r) \in (D_n)^r \text{ s.t. } z_i \neq z_j \forall i, j \right\} / \mathfrak{S}_r$$

Remark (Mixed braid group)

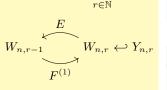
$$\pi_1(X_r, \boldsymbol{\xi_r}) \subset \mathcal{B}_{r+n}$$

Let $r \in \mathbb{N}$, and $\mathcal{R}_{\max} := \mathbb{Z}\left[t^{\pm 1}, q^{\pm \alpha_1}, \dots, q^{\pm \alpha_n}\right]$.

$$D_n$$
:



$$(V^{\alpha})^{\otimes n} \simeq_{\mathcal{B}_n} \bigoplus_{r \in \mathbb{N}} W_{n,r}$$



Configuration space

Definition (Configuration space of points in the punctured disk)

Let D_n be the disk with n punctures.

$$X_r = \left\{ \left(z_1, \dots, z_r\right) \in \left(D_n\right)^r \text{ s.t. } z_i \neq z_j \forall i, j \right\} / \mathfrak{S}_r$$

Remark (Mixed braid group)

$$\pi_1(X_r, \boldsymbol{\xi_r}) \subset \mathcal{B}_{r+n}$$

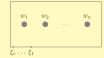
Let $r \in \mathbb{N}$, and $\mathcal{R}_{\max} := \mathbb{Z}\left[t^{\pm 1}, q^{\pm \alpha_1}, \dots, q^{\pm \alpha_n}\right]$.

Definition (Local system)

Let L_r be the maximal abelian local system associated with the Hurewicz map:

$$ho_r: \mathbb{Z}\left[\pi_1(X_r, \boldsymbol{\xi_r})\right] o \mathcal{R}_{\mathsf{max}}.$$

$$D_n$$
:



$$(V^{\alpha})^{\otimes n} \simeq_{\mathcal{B}_n} \bigoplus_{r \in \mathbb{N}} W_{n,r}$$

$$W_{n,r-1}$$
 $F^{(1)}$
 $W_{n,r} \hookrightarrow Y_{n,r}$

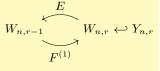
Homology

Definition

We define the following homology modules:

$$\mathcal{H}_{\widehat{\mathcal{T}}}^{\mathsf{abs}} := \mathcal{H}_{\widehat{\mathcal{T}}}\left(X_{\widehat{\mathcal{T}}}; L_r\right)$$

$$(V^{\alpha})^{\otimes n} \simeq_{\mathcal{B}_n} \bigoplus_{r \in \mathbb{N}} W_{n,r}$$



Homology

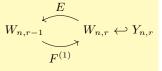
Definition

We define the following homology modules:

with:
$$X_r^- := \{\{z_1,\ldots,z_r\} \in X_r \text{ s.t. for some } i \text{ , } z_i = w_0 := -1\}$$

$$D_n: {\scriptstyle \stackrel{w_0}{\bullet} \stackrel{w_1}{\bullet} \stackrel{w_2}{\bullet} \stackrel{w_n}{\bullet} \stackrel{w_n}{\bullet}}$$

$$(V^{\alpha})^{\otimes n} \simeq_{\mathcal{B}_n} \bigoplus_{r \in \mathbb{N}} W_{n,r}$$



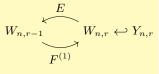
Homology

Definition

We define the following homology modules:

with:
$$X_r^- := \{\{z_1,\ldots,z_r\} \in X_r \text{ s.t. for some } i \text{ , } z_i = w_0 := -1\}$$

$$(V^{\alpha})^{\otimes n} \simeq_{\mathcal{B}_n} \bigoplus_{r \in \mathbb{N}} W_{n,r}$$



Homology

Definition

We define the following homology modules:

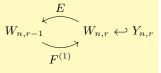
$$\mathcal{H}^{\mathsf{abs}}_{\textcircled{r}} := \mathrm{H}_{\textcircled{r}} \left(X_{\textcircled{r}}; L_r \right) \text{ and } \mathcal{H}^{\mathsf{rel}}_{\textcircled{r}} := \mathrm{H}_{\textcircled{r}} \left(X_{\textcircled{r}}, X_{\textcircled{r}}^-; L_r \right)$$

with:
$$X_r^- := \{\{z_1,\ldots,z_r\} \in X_r \text{ s.t. for some } i \text{ , } z_i = w_0 := -1\}$$

Homology theories

$$D_n$$
 : v_0 v_1 v_2 v_n v_n v_n v_n v_n v_n

$$(V^{\alpha})^{\otimes n} \simeq_{\mathcal{B}_n} \bigoplus_{r \in \mathbb{N}} W_{n,r}$$



Homology

Definition

We define the following homology modules:

$$\mathcal{H}^{\mathsf{abs}}_{\widehat{\mathcal{T}}} := \mathrm{H}_{\widehat{\mathcal{T}}} \left(X_{\widehat{\mathcal{T}}}; L_r \right) \text{ and } \mathcal{H}^{\mathsf{rel}}_{\widehat{\mathcal{T}}} := \mathrm{H}_{\widehat{\mathcal{T}}} \left(X_{\widehat{\mathcal{T}}}, X_{\widehat{\mathcal{T}}}^-; L_r \right)$$

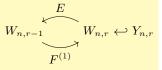
with:
$$X_r^- := \{ \{ z_1, \dots, z_r \} \in X_r \text{ s.t. for some } i \text{ , } z_i = w_0 := -1 \}$$

Homology theories

• with local coefficients in \mathcal{R}_{max} .

$$D_n: {}^{w_0}oldsymbol{igwedge} egin{pmatrix} w_1 & w_2 & & & w_n \ & lacksymbol{igwedge} & & & \ddots & lacksymbol{igwedge} \ & \xi_r \cdots \xi_1 \end{pmatrix}$$

$$(V^{\alpha})^{\otimes n} \simeq_{\mathcal{B}_n} \bigoplus_{r \in \mathbb{N}} W_{n,r}$$



Homology

Definition

We define the following homology modules:

$$\mathcal{H}^{\mathrm{abs}}_{\widehat{\mathcal{D}}} := \mathrm{H}_{\widehat{\mathcal{D}}} \, \left(X_{\widehat{\mathcal{D}}} ; L_r \right) \, \, \mathrm{and} \, \, \, \mathcal{H}^{\mathrm{rel}}_{\widehat{\mathcal{D}}} \, := \mathrm{H}_{\widehat{\mathcal{D}}} \, \left(X_{\widehat{\mathcal{D}}}, X_{\widehat{\mathcal{D}}}^- ; L_r \right)$$

with:
$$X_r^- := \{ \{ z_1, \dots, z_r \} \in X_r \text{ s.t. for some } i \text{ , } z_i = w_0 := -1 \}$$

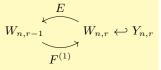
Homology theories

• with local coefficients in \mathcal{R}_{max} . If $(\widehat{X_r}, \widehat{\boldsymbol{\xi_r}})$ is the maximal abelian cover of X_r , then:

$$C_r(X_r; L_r) := C_r(\widehat{X_r}; \mathbb{Z})$$

$$D_n: {}^{w_0}oldsymbol{igwedge} egin{pmatrix} w_1 & w_2 & & & w_n \ & lacksymbol{igwedge} & & & \ddots & lacksymbol{igwedge} \ & \xi_r \cdots \xi_1 \end{pmatrix}$$

$$(V^{\alpha})^{\otimes n} \simeq_{\mathcal{B}_n} \bigoplus_{r \in \mathbb{N}} W_{n,r}$$



Homology

Definition

We define the following homology modules:

$$\mathcal{H}^{\mathrm{abs}}_{\widehat{\mathcal{D}}} := \mathrm{H}_{\widehat{\mathcal{D}}} \, \left(X_{\widehat{\mathcal{D}}} ; L_r \right) \, \, \mathrm{and} \, \, \, \mathcal{H}^{\mathrm{rel}}_{\widehat{\mathcal{D}}} \, := \mathrm{H}_{\widehat{\mathcal{D}}} \, \left(X_{\widehat{\mathcal{D}}}, X_{\widehat{\mathcal{D}}}^- ; L_r \right)$$

with:
$$X_r^- := \{ \{ z_1, \dots, z_r \} \in X_r \text{ s.t. for some } i \text{ , } z_i = w_0 := -1 \}$$

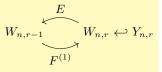
Homology theories

• with local coefficients in \mathcal{R}_{max} . If $(\widehat{X_r}, \widehat{\boldsymbol{\xi_r}})$ is the maximal abelian cover of X_r , then:

$$C_r(X_r; L_r) := C_r(\widehat{X_r}; \mathbb{Z})$$
 (acted upon by \mathcal{R}_{max})

$$D_n: {}^{w_0}oldsymbol{igwedge} egin{pmatrix} w_1 & w_2 & & & w_n \ & lacksymbol{igwedge} & & & \ddots & lacksymbol{igwedge} \ & \xi_r \cdots \xi_1 \end{pmatrix}$$

$$(V^{\alpha})^{\otimes n} \simeq_{\mathcal{B}_n} \bigoplus_{r \in \mathbb{N}} W_{n,r}$$



Homology

Definition

We define the following homology modules:

with:
$$X_r^- := \{ \{ z_1, \dots, z_r \} \in X_r \text{ s.t. for some } i \text{ , } z_i = w_0 := -1 \}$$

Homology theories

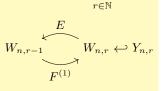
• with local coefficients in \mathcal{R}_{max} . If $(\widehat{X_r}, \widehat{\boldsymbol{\xi_r}})$ is the maximal abelian cover of X_r , then:

$$C_r(X_r; L_r) := C_r(\widehat{X_r}; \mathbb{Z})$$
 (acted upon by $\mathcal{R}_{\sf max}$)

of locally finite chains.

$$D_n$$
 : w_0 w_1 w_2 w_n w_n w_n w_n w_n

$$(V^{\alpha})^{\otimes n} \simeq_{\mathcal{B}_n} \bigoplus_{r \in \mathbb{N}} W_{n,r}$$



Homological representations

$$\mathcal{H}_r^{\mathsf{abs}} := \mathrm{H}_r^{lf}\left(X_r; L_r\right)$$

$$\mathcal{H}_r^{\mathsf{rel}} := \mathbf{H}_r^{lf}\left(X_r, X_r^-; L_r\right)$$

Homology

Definition

We define the following homology modules:

$$\mathcal{H}^{\mathsf{abs}}_{\widehat{\mathcal{T}}} := \mathrm{H}^{\mathsf{lf}}_{\widehat{\mathcal{T}}} \left(X_{\widehat{\mathcal{T}}}; L_r \right) \text{ and } \mathcal{H}^{\mathsf{rel}}_{\widehat{\mathcal{T}}} := \mathrm{H}^{\mathsf{lf}}_{\widehat{\mathcal{T}}} \left(X_{\widehat{\mathcal{T}}}, X_{\widehat{\mathcal{T}}}^-; L_r \right)$$

with:
$$X_r^- := \{\{z_1,\ldots,z_r\} \in X_r \text{ s.t. for some } i \text{ , } z_i = w_0 := -1\}$$

Homology theories

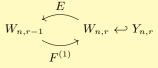
• with local coefficients in \mathcal{R}_{max} . If $(\widehat{X}_r, \widehat{\boldsymbol{\xi}_r})$ is the maximal abelian cover of X_r , then:

$$C_r\left(X_r;L_r
ight):=C_r(\widehat{X_r};\mathbb{Z})$$
 (acted upon by $\mathcal{R}_{\sf max}$)

 of locally finite chains. Closed submanifolds (even non-compact) represent locally finite cycles.

12 / 29

$$(V^{\alpha})^{\otimes n} \simeq_{\mathcal{B}_n} \bigoplus_{r \in \mathbb{N}} W_{n,r}$$



Homological representations

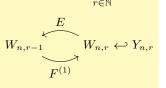
$$\mathcal{H}_r^{\mathsf{abs}} := \mathrm{H}_r^{lf}\left(X_r; L_r\right)$$

$$\mathcal{H}_r^{\mathsf{rel}} := \mathbf{H}_r^{lf}\left(X_r, X_r^-; L_r\right)$$

Previous results

$$D_n$$
 : w_0 w_1 w_2 w_n w_n w_n

$$(V^{\alpha})^{\otimes n} \simeq_{\mathcal{B}_n} \bigoplus_{r \in \mathbb{N}} W_{n,r}$$



Homological representations

$$\mathcal{H}_r^{\mathsf{abs}} := \mathbf{H}_r^{lf} \left(X_r; L_r \right)$$

$$\mathcal{H}_r^{\mathsf{rel}} := \mathbf{H}_r^{lf} \left(X_r, X_r^-; L_r \right)$$

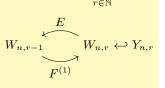
Previous results

Theorems (History of Lawrence's representations)

• The modules \mathcal{H}_r^{abs} are representations of \mathcal{B}_n (Lawrence, 1990)

$$D_n$$
: $v_0 \circ v_1 \circ v_2 \circ v_n \circ v_n$

$$(V^{\alpha})^{\otimes n} \simeq_{\mathcal{B}_n} \bigoplus_{r \in \mathbb{N}} W_{n,r}$$



Homological representations

$$\mathcal{H}_r^{\mathsf{abs}} := \mathrm{H}_r^{lf}\left(X_r; L_r\right)$$

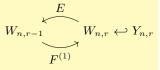
$$\mathcal{H}_r^{\mathsf{rel}} := \mathrm{H}_r^{lf}\left(X_r, X_r^-; L_r\right)$$

Previous results

- The modules \mathcal{H}_r^{abs} are representations of \mathcal{B}_n (Lawrence, 1990)
- The representation \mathcal{H}_2^{abs} , called BKL, is faithful (Bigelow, Krammer, 2000)

$$D_n: {\scriptstyle w_0 \atop \bullet} {\scriptstyle w_1 \atop \bullet} {\scriptstyle w_2 \atop \cdots} {\scriptstyle w_n \atop \bullet} {\scriptstyle \omega_n \atop \bullet}$$

$$(V^{\alpha})^{\otimes n} \simeq_{\mathcal{B}_n} \bigoplus_{r \in \mathbb{N}} W_{n,r}$$



Homological representations

$$\mathcal{H}_r^{\mathsf{abs}} := \mathrm{H}_r^{lf}\left(X_r; L_r\right)$$

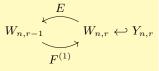
$$\mathcal{H}_r^{\mathsf{rel}} := \mathrm{H}_r^{lf}\left(X_r, X_r^-; L_r\right)$$

Previous results

- The modules \mathcal{H}_r^{abs} are representations of \mathcal{B}_n (Lawrence, 1990)
- The representation \mathcal{H}_2^{abs} , called BKL, is faithful (Bigelow, Krammer, 2000)
- Representations $Y_{n,r}$ and \mathcal{H}_r^{abs} are isomorphic

$$D_n$$
: w_0 w_1 w_2 w_n w_n

$$(V^{\alpha})^{\otimes n} \simeq_{\mathcal{B}_n} \bigoplus_{r \in \mathbb{N}} W_{n,r}$$



Homological representations

$$\mathcal{H}_r^{\mathsf{abs}} := \mathrm{H}_r^{lf}\left(X_r; L_r\right)$$

$$\mathcal{H}_r^{\mathsf{rel}} := \mathrm{H}_r^{lf}\left(X_r, X_r^-; L_r\right)$$

Previous results

- The modules $\mathcal{H}_r^{\mathsf{abs}}$ are representations of \mathcal{B}_n (Lawrence, 1990)
- The representation \mathcal{H}_2^{abs} , called BKL, is faithful (Bigelow, Krammer, 2000)
- Representations $Y_{n,r}$ and \mathcal{H}_r^{abs} are isomorphic (Kerler Jackson for r=2,

$$(V^{\alpha})^{\otimes n} \simeq_{\mathcal{B}_n} \bigoplus_{r \in \mathbb{N}} W_{n,r}$$

$$W_{n,r-1} \underbrace{F^{(1)}}^{E} W_{n,r} \hookleftarrow Y_{n,r}$$

Homological representations

$$\mathcal{H}_r^{\mathsf{abs}} := \mathrm{H}_r^{lf}\left(X_r; L_r\right)$$

$$\mathcal{H}_r^{\mathsf{rel}} := \mathrm{H}_r^{lf}\left(X_r, X_r^-; L_r\right)$$

Previous results

- The modules \mathcal{H}_r^{abs} are representations of \mathcal{B}_n (Lawrence, 1990)
- ullet The representation \mathcal{H}_2^{abs} , called BKL, is faithful (Bigelow, Krammer, 2000)
- Representations $Y_{n,r}$ and \mathcal{H}_r^{abs} are isomorphic (Kerler Jackson for r=2, Kohno for all r but for a generic set of parameters q and α , 2010)

$$D_n$$
: $v_0 \bullet v_1 \bullet v_2 \bullet v_n \bullet v_n$

$$(V^{\alpha})^{\otimes n} \simeq_{\mathcal{B}_n} \bigoplus_{r \in \mathbb{N}} W_{n,r}$$

$$W_{n,r-1} \underbrace{\overset{E}{\bigvee}}_{F^{(1)}} W_{n,r} \hookleftarrow Y_{n,r}$$

Homological representations

$$\mathcal{H}_r^{\mathsf{abs}} := \mathrm{H}_r^{lf}\left(X_r; L_r\right)$$

$$\mathcal{H}_r^{\mathsf{rel}} := \mathbf{H}_r^{lf} \left(X_r, X_r^-; L_r \right)$$

Previous results

Theorems (History of Lawrence's representations)

- The modules \mathcal{H}_r^{abs} are representations of \mathcal{B}_n (Lawrence, 1990)
- ullet The representation \mathcal{H}_2^{abs} , called BKL, is faithful (Bigelow, Krammer, 2000)
- Representations $Y_{n,r}$ and \mathcal{H}_r^{abs} are isomorphic (Kerler Jackson for r=2, Kohno for all r but for a generic set of parameters q and α , 2010)

Felder and Wieczerkowski (1995): A topological action of $U_q\mathfrak{sl}(2)$ from the configuration space of D_n .

$$D_n$$
: $v_0 \bullet v_1 \bullet v_2 \bullet v_n \bullet v_n$

$$(V^{\alpha})^{\otimes n} \simeq_{\mathcal{B}_n} \bigoplus_{r \in \mathbb{N}} W_{n,r}$$

$$W_{n,r-1} \underbrace{F^{(1)}}^{E} W_{n,r} \hookleftarrow Y_{n,r}$$

Homological representations

$$\mathcal{H}_r^{\mathsf{abs}} := \mathrm{H}_r^{lf}\left(X_r; L_r\right)$$

$$\mathcal{H}_r^{\mathsf{rel}} := \mathrm{H}_r^{lf}\left(X_r, X_r^-; L_r\right)$$

Previous results

Theorems (History of Lawrence's representations)

- The modules \mathcal{H}_r^{abs} are representations of \mathcal{B}_n (Lawrence, 1990)
- The representation \mathcal{H}_2^{abs} , called BKL, is faithful (Bigelow, Krammer, 2000)
- Representations $Y_{n,r}$ and \mathcal{H}_r^{abs} are isomorphic (Kerler Jackson for r=2, Kohno for all r but for a generic set of parameters q and α , 2010)

Felder and Wieczerkowski (1995): A topological action of $U_q\mathfrak{sl}(2)$ from the configuration space of D_n .

Its homological meaning remained conjectural.

$$D_n$$
:

$$(V^{\alpha})^{\otimes n} \simeq_{\mathcal{B}_n} \bigoplus_{r \in \mathbb{N}} W_{n,r}$$

$$W_{n,r-1} \underbrace{F^{(1)}}^{E} W_{n,r} \hookleftarrow Y_{n,r}$$

Homological representations

$$\mathcal{H}_r^{\mathsf{abs}} := \mathrm{H}_r^{lf}\left(X_r; L_r\right)$$

$$\mathcal{H}_r^{\mathsf{rel}} := \mathrm{H}_r^{lf}\left(X_r, X_r^-; L_r\right)$$

Previous results

Theorems (History of Lawrence's representations)

- The modules \mathcal{H}_r^{abs} are representations of \mathcal{B}_n (Lawrence, 1990)
- ullet The representation \mathcal{H}_2^{abs} , called BKL, is faithful (Bigelow, Krammer, 2000)
- Representations $Y_{n,r}$ and \mathcal{H}_r^{abs} are isomorphic (Kerler Jackson for r=2, Kohno for all r but for a generic set of parameters q and α , 2010)

Felder and Wieczerkowski (1995): A topological action of $U_q\mathfrak{sl}(2)$ from the configuration space of D_n .

Its homological meaning remained conjectural.

The goal of this work is to generalize these results.

$$D_n$$
 : w_0 w_1 w_2 w_n w_n w_n w_n

$$(V^{\alpha})^{\otimes n} \simeq_{\mathcal{B}_n} \bigoplus_{r \in \mathbb{N}} W_{n,r}$$

$$W_{n,r-1} \underbrace{\overset{E}{\bigvee}}_{F^{(1)}} W_{n,r} \hookleftarrow Y_{n,r}$$

Homological representations

$$\mathcal{H}_r^{\mathsf{abs}} := \mathrm{H}_r^{lf}\left(X_r; L_r\right)$$

$$\mathcal{H}_r^{\mathsf{rel}} := \mathrm{H}_r^{lf}\left(X_r, X_r^-; L_r\right)$$

Previous results

Theorems (History of Lawrence's representations)

- The modules \mathcal{H}_r^{abs} are representations of \mathcal{B}_n (Lawrence, 1990)
- The representation \mathcal{H}_2^{abs} , called BKL, is faithful (Bigelow, Krammer, 2000)
- Representations $Y_{n,r}$ and \mathcal{H}_r^{abs} are isomorphic (Kerler Jackson for r=2, Kohno for all r but for a generic set of parameters q and α , 2010)

Felder and Wieczerkowski (1995): A topological action of $U_q\mathfrak{sl}(2)$ from the configuration space of D_n .

Its homological meaning remained conjectural.

The goal of this work is to generalize these results.

Colored version for Lawrence representations (arXiv:2004.00977)

This preprint provides matrices for colored version of Lawrence representations.

$$D_n: {\scriptstyle w_0 \ lackbox{ & } w_1 \ lackbox{ & } w_2 \ lackbox{ & } w_n \ lackbox{ & } \ l$$

$$(V^{\alpha})^{\otimes n} \simeq_{\mathcal{B}_n} \bigoplus_{r \in \mathbb{N}} W_{n,r}$$

$$W_{n,r-1} \underbrace{\overset{E}{\bigvee}}_{F^{(1)}} W_{n,r} \hookleftarrow Y_{n,r}$$

Homological representations

$$\mathcal{H}_r^{\mathsf{abs}} := \mathrm{H}_r^{lf}\left(X_r; L_r\right)$$

$$\mathcal{H}_r^{\mathsf{rel}} := \mathbf{H}_r^{lf}\left(X_r, X_r^-; L_r\right)$$

Prerequisite of quantum algebra

2 Homology of configuration spaces of points

- 3 Structure of the homology
- 4 Homological representations and results

$$D_n: {}^{w_0}oldsymbol{igwedge} egin{pmatrix} w_1 & w_2 & & w_n \ & \bullet & & \ddots & igwedge \ & \xi_r \dots & \xi_1 \end{pmatrix}}$$

$$(V^{\alpha})^{\otimes n} \simeq_{\mathcal{B}_n} \bigoplus_{r \in \mathbb{N}} W_{n,r}$$

$$W_{n,r-1} \underbrace{\overset{E}{\bigvee}}_{F^{(1)}} W_{n,r} \hookleftarrow Y_{n,r}$$

Homological representations

$$\mathcal{H}_r^{\mathsf{abs}} := \mathrm{H}_r^{lf}\left(X_r; L_r\right)$$

$$\mathcal{H}_r^{\mathsf{rel}} := \mathbf{H}_r^{lf}\left(X_r, X_r^-; L_r\right)$$

$$(V^{\alpha})^{\otimes n} \simeq_{\mathcal{B}_n} \bigoplus_{r \in \mathbb{N}} W_{n,r}$$

$$W_{n,r-1} \underbrace{\overset{E}{\underset{F^{(1)}}{\longleftarrow}}} W_{n,r} \hookleftarrow Y_{n,r}$$

Homological representations

$$\mathcal{H}_r^{\mathsf{abs}} := \mathrm{H}_r^{lf}\left(X_r; L_r\right)$$

$$\mathcal{H}_r^{\mathsf{rel}} := \mathbf{H}_r^{lf} \left(X_r, X_r^-; L_r \right)$$

$$\{0 < t_1 < \dots < t_r < 1\} = \Delta^r$$

$$(V^{\alpha})^{\otimes n} \simeq_{\mathcal{B}_n} \bigoplus_{r \in \mathbb{N}} W_{n,r}$$

$$W_{n,r-1} \underbrace{F^{(1)}}^{E} W_{n,r} \hookleftarrow Y_{n,r}$$

Homological representations

$$\mathcal{H}_r^{\mathsf{abs}} := \mathrm{H}_r^{lf}\left(X_r; L_r\right)$$

$$\mathcal{H}_r^{\mathsf{rel}} := \mathbf{H}_r^{lf} \left(X_r, X_r^-; L_r \right)$$

$$\{0 < t_1 < \dots < t_r < 1\} = \Delta^r \quad \xrightarrow{\Phi} \quad$$

$$(V^{\alpha})^{\otimes n} \simeq_{\mathcal{B}_n} \bigoplus_{r \in \mathbb{N}} W_{n,r}$$

$$W_{n,r-1} \underbrace{\overset{E}{\bigvee}}_{F^{(1)}} W_{n,r} \hookleftarrow Y_{n,r}$$

Homological representations

$$\mathcal{H}_r^{\mathsf{abs}} := \mathrm{H}_r^{lf}\left(X_r; L_r\right)$$

$$\mathcal{H}_r^{\mathsf{rel}} := \mathcal{H}_r^{lf} \left(X_r, X_r^-; L_r \right)$$

$$\{0 < t_1 < \dots < t_r < 1\} = \Delta^r \qquad \stackrel{\Phi}{\longrightarrow} \qquad \boxed{\begin{array}{c} w_1 \\ \bullet & -r \\ \bullet & -r \\ \bullet & \bullet \end{array}} \in X$$

$$D_n: {}^{w_0}oldsymbol{igwedge} egin{pmatrix} w_1 & w_2 & & w_n \ & \bullet & & \ddots & \bullet \ & & & & \ddots & \bullet \ & & & & & & & & \end{pmatrix}$$

$$(V^{\alpha})^{\otimes n} \simeq_{\mathcal{B}_n} \bigoplus_{r \in \mathbb{N}} W_{n,r}$$

$$W_{n,r-1} \underbrace{F^{(1)}}^{E} W_{n,r} \hookleftarrow Y_{n,r}$$

Homological representations

$$\mathcal{H}_r^{\mathsf{abs}} := \mathrm{H}_r^{lf}\left(X_r; L_r\right)$$

$$\mathcal{H}_r^{\mathsf{rel}} := \mathrm{H}_r^{lf}\left(X_r, X_r^-; L_r\right)$$

$$\{0 < t_1 < \dots < t_r < 1\} = \Delta^r \qquad \stackrel{\Phi}{\longrightarrow} \qquad \stackrel{\stackrel{w_1}{\longleftarrow} - \frac{r}{r} - \dots \stackrel{w_2}{\longleftarrow}}{\longrightarrow} \in X$$

$$\qquad \qquad \qquad \Phi(\Delta^r) \in X_r$$

$$\qquad \qquad \qquad \Phi \in \mathcal{H}_r^{lf}(X_r, \mathbb{Z})$$

$$(V^{\alpha})^{\otimes n} \simeq_{\mathcal{B}_n} \bigoplus_{r \in \mathbb{N}} W_{n,r}$$

$$W_{n,r-1} \underbrace{\overset{E}{\bigvee}}_{F^{(1)}} W_{n,r} \hookleftarrow Y_{n,r}$$

Homological representations

$$\mathcal{H}_r^{\mathsf{abs}} := \mathrm{H}_r^{lf}\left(X_r; L_r\right)$$

$$\mathcal{H}_r^{\mathsf{rel}} := \mathrm{H}_r^{lf}\left(X_r, X_r^-; L_r\right)$$

$$\{0 < t_1 < \dots < t_r < 1\} = \Delta^r \qquad \stackrel{\Phi}{\longrightarrow} \qquad \stackrel{w_1}{\longleftarrow} \stackrel{v_2}{\longleftarrow} = X_r$$

$$\sim \longrightarrow \qquad \Phi(\Delta^r) \in X_r$$

$$\sim \longrightarrow \qquad \Phi \in \mathrm{H}^{lf}_r(X_r, \mathbb{Z})$$

$$D_n: {}^{w_0}oldsymbol{igwedge} egin{pmatrix} w_1 & w_2 & & w_n \ & \bullet & & \ddots & igwedge \ & \xi_r \dots & \xi_1 \end{pmatrix}}$$

$$(V^{\alpha})^{\otimes n} \simeq_{\mathcal{B}_n} \bigoplus_{r \in \mathbb{N}} W_{n,r}$$

$$W_{n,r-1} \underbrace{\overset{E}{\bigvee}}_{F^{(1)}} W_{n,r} \hookleftarrow Y_{n,r}$$

Homological representations

$$\mathcal{H}_r^{\mathsf{abs}} := \mathrm{H}_r^{lf}\left(X_r; L_r\right)$$

$$\mathcal{H}_r^{\mathsf{rel}} := \mathrm{H}_r^{lf}\left(X_r, X_r^-; L_r\right)$$

$$\{0 < t_1 < \dots < t_r < 1\} = \Delta^r \qquad \stackrel{\Phi}{\longrightarrow} \qquad \stackrel{w_1}{\longleftarrow} \stackrel{v_2}{\longleftarrow} \in X_r$$

$$\sim \longrightarrow \qquad \Phi(\Delta^r) \in X_r$$

$$\sim \longrightarrow \qquad \Phi \in \mathrm{H}^{lf}_r(X_r, \mathbb{Z})$$

$$\stackrel{handle}{\longleftarrow} \longrightarrow$$

$$(V^{\alpha})^{\otimes n} \simeq_{\mathcal{B}_n} \bigoplus_{r \in \mathbb{N}} W_{n,r}$$

$$W_{n,r-1} \underbrace{\overset{E}{\bigvee}}_{F^{(1)}} W_{n,r} \hookleftarrow Y_{n,r}$$

Homological representations

$$\mathcal{H}_r^{\mathsf{abs}} := \mathrm{H}_r^{lf}\left(X_r; L_r\right)$$

$$\mathcal{H}_r^{\mathsf{rel}} := \mathrm{H}_r^{lf}\left(X_r, X_r^-; L_r\right)$$

$$\{0 < t_1 < \dots < t_r < 1\} = \Delta^r \qquad \stackrel{\Phi}{\longrightarrow} \qquad \stackrel{w_1}{\longleftarrow} \stackrel{v_2}{\longleftarrow} = X_r$$

$$\sim \sim \rightarrow \qquad \Phi(\Delta^r) \in X_r$$

$$\sim \sim \rightarrow \qquad \Phi \in \mathrm{H}^{lf}_r(X_r, \mathbb{Z})$$

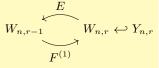
$$\stackrel{+ \text{ handle}}{\longleftarrow} \qquad \Phi \in \mathcal{H}^{\mathrm{abs}}_r$$

$$D_n$$
 : w_0 v_1 v_2 v_n v_n v_n v_n v_n v_n

Examples of homology classes

Quantum representations

$$(V^{\alpha})^{\otimes n} \simeq_{\mathcal{B}_n} \bigoplus_{r \in \mathbb{N}} W_{n,r}$$

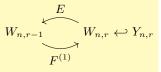


Homological representations

$$\mathcal{H}_r^{\mathsf{abs}} := \mathrm{H}_r^{lf}\left(X_r; L_r\right)$$

$$\mathcal{H}_r^{\mathsf{rel}} := \mathrm{H}_r^{lf}\left(X_r, X_r^-; L_r\right)$$

$$(V^{\alpha})^{\otimes n} \simeq_{\mathcal{B}_n} \bigoplus_{r \in \mathbb{N}} W_{n,r}$$



Homological representations

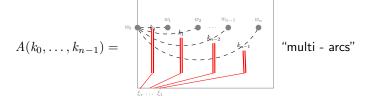
$$\mathcal{H}_r^{\mathsf{abs}} := \mathrm{H}_r^{lf}\left(X_r; L_r\right)$$

$$\mathcal{H}_r^{\mathsf{rel}} := \mathrm{H}_r^{lf}\left(X_r, X_r^-; L_r\right)$$

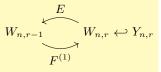
Examples of homology classes

For (k_0, \ldots, k_{n-1}) such that $\sum k_i = r$, following drawings correspond to classes in $\mathcal{H}_r^{\mathsf{rel}}$:

$$U(k_0,\ldots,k_{n-1})=$$
 $U(k_0,\ldots,k_{n-1})=$ $V(k_0,\ldots,k_{n-1})=$ $V(k_0,\ldots,k_{n-1})=$ $V(k_0,\ldots,k_{n-1})=$ $V(k_0,\ldots,k_{n-1})=$ $V(k_0,\ldots,k_{n-1})=$



$$(V^{\alpha})^{\otimes n} \simeq_{\mathcal{B}_n} \bigoplus_{r \in \mathbb{N}} W_{n,r}$$



Homological representations

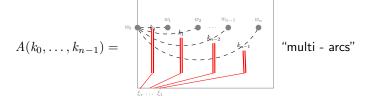
$$\mathcal{H}_r^{\mathsf{abs}} := \mathrm{H}_r^{lf}\left(X_r; L_r\right)$$

$$\mathcal{H}_r^{\mathsf{rel}} := \mathrm{H}_r^{lf}\left(X_r, X_r^-; L_r\right)$$

Examples of homology classes

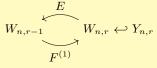
For (k_0, \ldots, k_{n-1}) such that $\sum k_i = r$, following drawings correspond to classes in $\mathcal{H}_r^{\mathsf{rel}}$:

$$U(k_0,\ldots,k_{n-1})=$$
 $U(k_0,\ldots,k_{n-1})=$ $V(k_0,\ldots,k_{n-1})=$ $V(k_0,\ldots,k_{n-1})=$ $V(k_0,\ldots,k_{n-1})=$ $V(k_0,\ldots,k_{n-1})=$ $V(k_0,\ldots,k_{n-1})=$



$$D_n: egin{pmatrix} w_0 & w_1 & w_2 & w_n \ & \bullet & \cdots & \bullet \ & & \ddots & \bullet \ & & & \ddots & \bullet \ & & & & \ddots & \bullet \ \end{pmatrix}$$

$$(V^{\alpha})^{\otimes n} \simeq_{\mathcal{B}_n} \bigoplus_{r \in \mathbb{N}} W_{n,r}$$



Homological representations

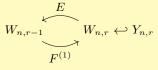
$$\mathcal{H}_r^{\mathsf{abs}} := \mathrm{H}_r^{lf}\left(X_r; L_r\right)$$

$$\mathcal{H}_r^{\mathsf{rel}} := \mathbf{H}_r^{lf} \left(X_r, X_r^-; L_r \right)$$

Structure of the homology

Proposition (Structural result)

$$(V^{\alpha})^{\otimes n} \simeq_{\mathcal{B}_n} \bigoplus_{r \in \mathbb{N}} W_{n,r}$$



Homological representations

$$\mathcal{H}_r^{\mathsf{abs}} := \mathrm{H}_r^{lf}\left(X_r; L_r\right)$$

$$\mathcal{H}_r^{\mathsf{rel}} := \mathrm{H}_r^{lf}\left(X_r, X_r^-; L_r\right)$$

Structure of the homology

Proposition (Structural result)

• \mathcal{H}_r^{rel} is a free \mathcal{R}_{max} -module,

$$D_n: {}^{w_0} egin{pmatrix} {}^{w_1} & {}^{w_2} & \ldots & {}^{w_n} \ & \bullet & \cdots & \bullet \ & & \ddots & \bullet \ & & & \ddots & \bullet \ \end{pmatrix}$$

$$(V^{\alpha})^{\otimes n} \simeq_{\mathcal{B}_n} \bigoplus_{r \in \mathbb{N}} W_{n,r}$$

$$W_{n,r-1} \underbrace{\overset{F}{\longleftarrow}}_{F^{(1)}} W_{n,r} \hookleftarrow Y_{n,r}$$

Homological representations

$$\mathcal{H}_r^{\mathsf{abs}} := \mathbf{H}_r^{lf} \left(X_r; L_r \right)$$

$$\mathcal{H}_r^{\mathsf{rel}} := \mathbf{H}_r^{lf} \left(X_r, X_r^-; L_r \right)$$

Structure of the homology

Proposition (Structural result)

- \bullet \mathcal{H}_r^{rel} is a free \mathcal{R}_{max} -module,
- For which the set $\{U(k_0,\ldots,k_{n-1}) \text{ s.t. } \sum k_i = r\}$ is a basis,

$$D_n: {}^{w_0} egin{pmatrix} {}^{w_1} & {}^{w_2} & \ldots & {}^{w_n} \ & \bullet & \cdots & \bullet \ & & \ddots & \bullet \ & & & \ddots & \bullet \ \end{pmatrix}$$

$$(V^{\alpha})^{\otimes n} \simeq_{\mathcal{B}_n} \bigoplus_{r \in \mathbb{N}} W_{n,r}$$

$$W_{n,r-1} \underbrace{\overset{E}{\bigvee}}_{F^{(1)}} W_{n,r} \hookleftarrow Y_{n,r}$$

Homological representations

$$\mathcal{H}_r^{\mathsf{abs}} := \mathrm{H}_r^{lf}\left(X_r; L_r\right)$$

$$\mathcal{H}_r^{\mathsf{rel}} := \mathrm{H}_r^{lf}\left(X_r, X_r^-; L_r\right)$$

Structure of the homology

Proposition (Structural result)

- \bullet \mathcal{H}_r^{rel} is a free \mathcal{R}_{max} -module,
- For which the set $\{U(k_0,\ldots,k_{n-1}) \text{ s.t. } \sum k_i = r\}$ is a basis,
- \mathcal{H}_r^{rel} is the only non vanishing module of $H_{\bullet}(X_r, X_r^-; L_r)$.

$$D_n$$
: $v_0 \circ v_1 \circ v_2 \circ v_n \circ v_n$

$$(V^{\alpha})^{\otimes n} \simeq_{\mathcal{B}_n} \bigoplus_{r \in \mathbb{N}} W_{n,r}$$

$$W_{n,r-1} \underbrace{\overset{E}{\bigvee}}_{F^{(1)}} W_{n,r} \hookleftarrow Y_{n,r}$$

Homological representations

$$\mathcal{H}_r^{\mathsf{abs}} := \mathrm{H}_r^{lf}\left(X_r; L_r\right)$$

$$\mathcal{H}_r^{\mathsf{rel}} := \mathbf{H}_r^{lf} \left(X_r, X_r^-; L_r \right)$$

Structure of the homology

Proposition (Structural result)

- ullet $\mathcal{H}^{\mathsf{rel}}_r$ is a free $\mathcal{R}_{\mathsf{max}}$ -module,
- For which the set $\{U(k_0,\ldots,k_{n-1}) \text{ s.t. } \sum k_i = r\}$ is a basis,
- \mathcal{H}_r^{rel} is the only non vanishing module of $H_{\bullet}(X_r, X_r^-; L_r)$.

<u>Idea</u>: If X is a configuration space, let $X^{\mathbb{R}}$ be configurations restricted to the real line.

$$D_n$$
 : v_0 v_1 v_2 v_n v_n v_n v_n v_n v_n

$$(V^{\alpha})^{\otimes n} \simeq_{\mathcal{B}_n} \bigoplus_{r \in \mathbb{N}} W_{n,r}$$

$$W_{n,r-1} \underbrace{\overset{E}{\bigvee}}_{F^{(1)}} W_{n,r} \hookleftarrow Y_{n,r}$$

Homological representations

$$\mathcal{H}_r^{\mathsf{abs}} := \mathrm{H}_r^{lf}\left(X_r; L_r\right)$$

$$\mathcal{H}_r^{\mathsf{rel}} := \mathcal{H}_r^{lf}\left(X_r, X_r^-; L_r\right)$$

Structure of the homology

Proposition (Structural result)

- \bullet \mathcal{H}_r^{rel} is a free \mathcal{R}_{max} -module,
- For which the set $\{U(k_0,\ldots,k_{n-1}) \text{ s.t. } \sum k_i = r\}$ is a basis,
- \mathcal{H}_r^{rel} is the only non vanishing module of $H_{\bullet}(X_r, X_r^-; L_r)$.

<u>Idea</u>: If X is a configuration space, let $X^{\mathbb{R}}$ be configurations restricted to the real <u>line</u>.

1) $\mathrm{H}^{lf}_{\bullet}\left(X_{r}^{\mathbb{R}},X_{r}^{\mathbb{R},-};L_{r}\right)\to\mathrm{H}^{lf}_{\bullet}\left(X_{r},X_{r}^{-};L_{r}\right)$ is an isomorphism.

$$D_n$$
: $\stackrel{w_0}{\bullet}$ $\stackrel{w_1}{\bullet}$ $\stackrel{w_2}{\bullet}$ $\stackrel{w_n}{\bullet}$ $\stackrel{w_n}{\bullet}$

$$(V^{\alpha})^{\otimes n} \simeq_{\mathcal{B}_n} \bigoplus_{r \in \mathbb{N}} W_{n,r}$$

$$W_{n,r-1} \underbrace{\bigvee_{F^{(1)}}^{E}}_{W_{n,r}} \longleftrightarrow Y_{n,r}$$

Homological representations

$$\mathcal{H}_r^{\mathsf{abs}} := \mathrm{H}_r^{lf}\left(X_r; L_r\right)$$

$$\mathcal{H}_r^{\mathsf{rel}} := \mathbf{H}_r^{lf} \left(X_r, X_r^-; L_r \right)$$

Structure of the homology

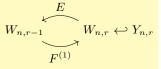
Proposition (Structural result)

- \mathcal{H}_r^{rel} is a free \mathcal{R}_{max} -module,
- For which the set $\{U(k_0,\ldots,k_{n-1}) \text{ s.t. } \sum k_i = r\}$ is a basis,
- \mathcal{H}_r^{rel} is the only non vanishing module of $H_{\bullet}(X_r, X_r^-; L_r)$.

<u>Idea</u>: If X is a configuration space, let $X^{\mathbb{R}}$ be configurations restricted to the real <u>line</u>.

- 1) $\mathrm{H}^{lf}_{\bullet}\left(X_{r}^{\mathbb{R}},X_{r}^{\mathbb{R},-};L_{r}\right)\to\mathrm{H}^{lf}_{\bullet}\left(X_{r},X_{r}^{-};L_{r}\right)$ is an isomorphism.
- 2) $X_r^{\mathbb{R}} = \bigsqcup_{\sum k_i = r} U(k_0, \dots, k_{n-1})$

$$(V^{\alpha})^{\otimes n} \simeq_{\mathcal{B}_n} \bigoplus_{r \in \mathbb{N}} W_{n,r}$$



Homological representations

$$\mathcal{H}_r^{\mathsf{abs}} := \mathrm{H}_r^{lf}\left(X_r; L_r\right)$$

$$\mathcal{H}_r^{\mathsf{rel}} := \mathrm{H}_r^{lf}\left(X_r, X_r^-; L_r\right)$$

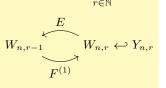
Diagram rules and multi-arcs basis

Example of homological rule

$$\left(\begin{array}{c} w_i - \frac{(k+1)}{2} - w_j \end{array}\right) = \left(\begin{array}{c} w_i - \frac{(k+1)}{2} - w_j \end{array}\right) \text{ (with } t = q^{-2}\text{)}.$$

$$D_n: egin{pmatrix} w_0 & egin{pmatrix} w_1 & w_2 & & w_n \ & lacksquare & & \ddots & lacksquare \ & \xi_r \dots & \xi_1 & & & \end{pmatrix}$$

$$(V^{\alpha})^{\otimes n} \simeq_{\mathcal{B}_n} \bigoplus_{r \in \mathbb{N}} W_{n,r}$$



Homological representations

$$\mathcal{H}_r^{\mathsf{abs}} := \mathrm{H}_r^{lf}\left(X_r; L_r\right)$$

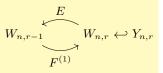
$$\mathcal{H}_r^{\mathsf{rel}} := \mathcal{H}_r^{lf} \left(X_r, X_r^-; L_r \right)$$

Diagram rules and multi-arcs basis

Example of homological rule

$$\left(\begin{array}{c} w_i \bullet \uparrow \\ \hline \end{array}\right) = q^{-k} \left[k+1\right]_q \left(\begin{array}{c} w_i \bullet - \frac{(k+1)}{4} - \bullet w_j \\ \hline \end{array}\right) \text{ (with } t = q^{-2}\text{)}.$$

$$(V^{\alpha})^{\otimes n} \simeq_{\mathcal{B}_n} \bigoplus_{r \in \mathbb{N}} W_{n,r}$$



Homological representations

$$\mathcal{H}_r^{\mathsf{abs}} := \mathrm{H}_r^{lf}\left(X_r; L_r\right)$$

$$\mathcal{H}_r^{\mathsf{rel}} := \mathrm{H}_r^{lf}\left(X_r, X_r^-; L_r\right)$$

Diagram rules and multi-arcs basis

Example of homological rule

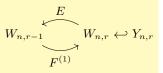
$$\left(\begin{array}{c} w_i & \bullet & b \\ \end{array}\right) = q^{-k} \left[k+1\right]_q \left(\begin{array}{c} w_i & \bullet & \frac{(k+1)}{2} - \bullet w_j \\ \end{array}\right) \text{ (with } t = q^{-2}\text{)}.$$

Handle rule

$$\left(\begin{array}{c} w_i \bullet \overbrace{} \\ \alpha \end{array}\right) = \left(\begin{array}{c} w_i \bullet \overbrace{} \\ \beta \end{array}\right)$$

$$D_n: egin{pmatrix} w_0 & egin{pmatrix} w_1 & w_2 & \dots & w_n \ & lacksquare & \dots & lacksquare \ & \xi_r \dots & \xi_1 \end{pmatrix}$$

$$(V^{\alpha})^{\otimes n} \simeq_{\mathcal{B}_n} \bigoplus_{r \in \mathbb{N}} W_{n,r}$$



Homological representations

$$\mathcal{H}_r^{\mathsf{abs}} := \mathrm{H}_r^{lf}\left(X_r; L_r\right)$$

$$\mathcal{H}_r^{\mathsf{rel}} := \mathrm{H}_r^{lf}\left(X_r, X_r^-; L_r\right)$$

Diagram rules and multi-arcs basis

Example of homological rule

$$\left(\begin{array}{c} w_i & \bullet & w_j \end{array}\right) = q^{-k} \left[k+1\right]_q \left(\begin{array}{c} w_i & \bullet & -\frac{(k+1)}{4} - \bullet & w_j \end{array}\right) \text{ (with } t = q^{-2}\text{)}.$$

Handle rule

$$\left(\begin{array}{c} w_i - \tilde{\mathbf{j}} - \tilde{\mathbf{j}} \\ \alpha \end{array}\right) = \rho_r(\beta \alpha^{-1}) \left(\begin{array}{c} w_i - \tilde{\mathbf{j}} - \tilde{\mathbf{j}} \\ \beta \end{array}\right)$$

$$D_n: {}^{w_0}oldsymbol{igwedge} egin{pmatrix} w_1 & w_2 & & & w_n \ & lackbreak & & \ddots & lackbreak \ & \xi_r \cdots \xi_1 & & & \end{matrix}$$

$$(V^{\alpha})^{\otimes n} \simeq_{\mathcal{B}_n} \bigoplus_{r \in \mathbb{N}} W_{n,r}$$

$$W_{n,r-1} \underbrace{\overset{E}{\bigvee}}_{F^{(1)}} W_{n,r} \hookleftarrow Y_{n,r}$$

Homological representations

$$\mathcal{H}_r^{\mathsf{abs}} := \mathrm{H}_r^{lf}\left(X_r; L_r\right)$$

$$\mathcal{H}_r^{\mathsf{rel}} := \mathrm{H}_r^{lf}\left(X_r, X_r^-; L_r\right)$$

Diagram rules and multi-arcs basis

Example of homological rule

$$\left(\begin{array}{c} w_i & \bullet & w_j \\ \end{array}\right) = q^{-k} \left[k+1\right]_q \left(\begin{array}{c} w_i & \bullet & \frac{(k+1)}{2} - \bullet & w_j \\ \end{array}\right) \text{ (with } t = q^{-2}\text{)}.$$

Handle rule

$$\left(\begin{array}{c} w_i & \text{ for } \\ \alpha & \text{ } \end{array}\right) = \rho_r(\beta\alpha^{-1}) \left(\begin{array}{c} w_i & \text{ } \\ \beta & \text{ } \end{array}\right)$$

Corollary

The multi-arcs form an integral basis of $\mathcal{H}_r^{\text{rel}}$ (i.e. over \mathcal{R}_{max}).

Idea: express multi-arcs in the U-basis.

$$D_n: {\scriptstyle w_0 igoplus \scriptstyle w_1 igoplus \scriptstyle w_2 igoplus \scriptstyle w_n igoplus \scriptstyle arphi \scriptstyle arph$$

$$(V^{\alpha})^{\otimes n} \simeq_{\mathcal{B}_n} \bigoplus_{r \in \mathbb{N}} W_{n,r}$$

$$W_{n,r-1} \underbrace{\overset{E}{\bigvee}}_{F^{(1)}} W_{n,r} \hookleftarrow Y_{n,r}$$

Homological representations

$$\mathcal{H}_r^{\mathsf{abs}} := \mathrm{H}_r^{lf}\left(X_r; L_r\right)$$

$$\mathcal{H}_r^{\mathsf{rel}} := \mathbf{H}_r^{lf}\left(X_r, X_r^-; L_r\right)$$

Prerequisite of quantum algebra

Momology of configuration spaces of points

- Structure of the homology
- 4 Homological representations and results

$$D_n: {\scriptstyle w_0 \atop \bullet} {\scriptstyle w_1 \atop \bullet} {\scriptstyle w_2 \atop \bullet} {\scriptstyle w_n \atop \bullet}$$
 Homological operators

$$(V^{\alpha})^{\otimes n} \simeq_{\mathcal{B}_n} \bigoplus_{r \in \mathbb{N}} W_{n,r}$$

$$W_{n,r-1} \underbrace{F^{(1)}}^{E} W_{n,r} \hookleftarrow Y_{n,r}$$

Homological representations

$$\mathcal{H}^{\mathsf{abs}}_r := \mathbb{H}^{lf}_r\left(X_r; L_r
ight)$$
 $\mathcal{H}^{\mathsf{rel}}_r := \mathbb{H}^{lf}_r\left(X_r, X_r^-; L_r
ight)$
 $\mathcal{H}^{\mathsf{rel}}_r := \mathcal{H}^{\mathsf{rel}}_r\left(X_r, X_r^-; L_r\right)$

General idea: mimic the quantum weight structure.

$$\mathcal{H}^{\mathsf{rel}}_{r-1} \underbrace{\stackrel{E'}{igsqcup}}_{F^{(1)}} \mathcal{H}^{\mathsf{rel}}_{r}$$

$$D_n: {}^{w_0} \stackrel{w_1}{\bullet} {}^{w_2} \stackrel{w_n}{\bullet} {}^{w_n}$$
 Homological operators

$$(V^{\alpha})^{\otimes n} \simeq_{\mathcal{B}_n} \bigoplus_{r \in \mathbb{N}} W_{n,r}$$

$$W_{n,r-1} \underbrace{\bigvee_{F^{(1)}}^{E}}_{W_{n,r}} \longleftrightarrow Y_{n,r}$$

Homological representations

$$\mathcal{H}_r^{\mathsf{abs}} := \mathrm{H}_r^{lf}\left(X_r; L_r\right)$$

$$\mathcal{H}_r^{\mathsf{rel}} := \mathbf{H}_r^{lf} \left(X_r, X_r^-; L_r \right)$$

$$\mathcal{H}^{\mathsf{rel}}_{r-1} \underbrace{\overset{E}{\longleftarrow}}_{F^{(1)}} \mathcal{H}^{\mathsf{rel}}_{r}$$

General idea: mimic the quantum weight structure.

$$\mathcal{H}^{\mathsf{rel}}_{r-1} \underbrace{\overset{E}{\underset{F^{(1)}}{\bigvee}}}_{\mathcal{F}^{(1)}} \mathcal{H}^{\mathsf{rel}}_{r}$$

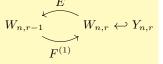
plus a diagonal action of K measuring the weight:

Definition (K)

$$K = q^{\sum \alpha_i} t^r \operatorname{Id}_{\mathcal{H}_r^{\mathsf{rel}}} \in \operatorname{End}\left(\mathcal{H}_r^{\mathsf{rel}}\right)$$

$$D_n: egin{pmatrix} w_1 & w_2 & & w_n \ & \bullet & & \ddots & \bullet \ & & & \ddots & \bullet \ & & & & \ddots & \bullet \ \end{bmatrix}$$

$$(V^{\alpha})^{\otimes n} \simeq_{\mathcal{B}_n} \bigoplus_{r \in \mathbb{N}} W_{n,r}$$



Homological representations

$$\mathcal{H}_r^{\mathsf{abs}} := \mathrm{H}_r^{lf}\left(X_r; L_r\right)$$
 $\mathcal{H}_r^{\mathsf{rel}} := \mathrm{H}_r^{lf}\left(X_r, X_r^-; L_r\right)$

Homological operators

Definition (Divided powers of F)

$$(V^{\alpha})^{\otimes n} \simeq_{\mathcal{B}_n} \bigoplus_{r \in \mathbb{N}} W_{n,r}$$

$$E$$

$$W_{n,r-1} \longrightarrow W_{n,r} \leftrightarrow Y_{n,r}$$

$$F^{(k)} : \left\{ \begin{array}{c} \mathcal{H}^{\mathsf{rel}}_r \to \mathcal{H}^{\mathsf{rel}}_{r+k} \\ U(k_0, \dots, k_{n-1}) \mapsto W_{n,r} & \text{the problem of the problem} \end{array} \right. (+ \text{ choice of lift}) .$$

$$D_n$$
 : $v_0 egin{pmatrix} & w_1 & w_2 & & w_n \ & \bullet & & \ddots & \bullet \ & & & & \ddots & \bullet \ & & & & & & & \end{pmatrix}$

$$(V^{\alpha})^{\otimes n} \simeq_{\mathcal{B}_n} \bigoplus_{r \in \mathbb{N}} W_{n,r}$$

$$W_{n,r-1} \underbrace{\bigvee_{F^{(1)}}^{E}}_{W_{n,r}} \longleftrightarrow Y_{n,r}$$

Homological representations

$$\mathcal{H}_r^{\mathsf{abs}} := \mathrm{H}_r^{lf}\left(X_r; L_r\right)$$

$$\mathcal{H}_r^{\mathsf{rel}} := \mathbf{H}_r^{lf} \left(X_r, X_r^-; L_r \right)$$

$$\mathcal{H}^{\mathsf{rel}}_{r-1} \underbrace{\overset{E}{\smile}}_{F^{(1)}} \mathcal{H}^{\mathsf{rel}}_{r}$$

Homological operators

Definition (Divided powers of F)

$$(V^{\alpha})^{\otimes n} \simeq_{\mathcal{B}_n} \bigoplus_{r \in \mathbb{N}} W_{n,r}$$

$$E$$

$$W_{n,r-1} \longrightarrow W_{n,r} \leftrightarrow Y_{n,r}$$

$$F^{(k)} : \left\{ \begin{array}{c} \mathcal{H}^{\mathsf{rel}}_r \to \mathcal{H}^{\mathsf{rel}}_{r+k} \\ U(k_0, \dots, k_{n-1}) \mapsto W_{n,r} & \text{the problem of the problem} \end{array} \right. (+ \text{ choice of lift}) .$$

Definition (E)

$$E: \mathcal{H}_r^{\mathsf{rel}} \xrightarrow{-\partial_*} H_{r-1}(X_r^-; L_r) \simeq \mathcal{H}_{r-1}^{\mathsf{rel}}$$

$$D_n$$
 : w_0 w_1 w_2 w_n w_n

Homological representation of $U_q^{\frac{L}{2}}\mathfrak{sl}(2)$

Quantum representations

$$(V^{\alpha})^{\otimes n} \simeq_{\mathcal{B}_n} \bigoplus_{r \in \mathbb{N}} W_{n,r}$$

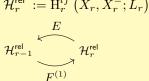
$$W_{n,r-1} \underbrace{\overset{E}{\bigvee}}_{F^{(1)}} W_{n,r} \hookleftarrow Y_{n,r}$$

Homological representations

$$\mathcal{H}_r^{\mathsf{abs}} := \mathrm{H}_r^{lf}\left(X_r; L_r\right)$$

$$\mathcal{H}_r^{\mathsf{rel}} := \mathbf{H}_r^{lf}\left(X_r, X_r^-; L_r\right)$$

$$\mathcal{H}^{\mathsf{rel}}_{r-1} \underbrace{\overset{E}{\longleftarrow}}_{F^{(1)}} \mathcal{H}^{\mathsf{rel}}_{r}$$



$$(V^{\alpha})^{\otimes n} \simeq_{\mathcal{B}_n} \bigoplus_{r \in \mathbb{N}} W_{n,r}$$

$$W_{n,r-1} \underbrace{\overset{E}{\bigvee}}_{F^{(1)}} W_{n,r} \hookleftarrow Y_{n,r}$$

Homological representations

$$\mathcal{H}_r^{\mathsf{abs}} := \mathrm{H}_r^{lf}\left(X_r; L_r\right)$$

$$\mathcal{H}_r^{\mathsf{rel}} := \mathbf{H}_r^{lf} \left(X_r, X_r^-; L_r \right)$$

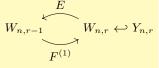
$$\mathcal{H}^{\mathrm{rel}}_{r-1} \underbrace{ \begin{matrix} E \\ \\ F^{(1)} \end{matrix}}_{F^{(1)}} \mathcal{H}^{\mathrm{rel}}_{r}$$

Homological representation of $U_q^{\frac{\omega}{2}}\mathfrak{sl}(2)$

From now on $t = q^{-2}$,

$$D_n$$
 : $w_0 egin{pmatrix} w_1 & w_2 & w_n \ \bullet & \bullet & \cdots \ \bullet \ \end{bmatrix}$

$$(V^{\alpha})^{\otimes n} \simeq_{\mathcal{B}_n} \bigoplus_{r \in \mathbb{N}} W_{n,r}$$



Homological representations

$$\mathcal{H}_r^{\mathsf{abs}} := \mathrm{H}_r^{lf}\left(X_r; L_r\right)$$

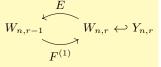
$$\mathcal{H}_r^{\mathsf{rel}} := \mathbf{H}_r^{lf} \left(X_r, X_r^-; L_r \right)$$

$$\mathcal{H}^{\mathrm{rel}}_{r-1} \underbrace{ \begin{matrix} E \\ \\ F^{(1)} \end{matrix}}_{F^{(1)}} \mathcal{H}^{\mathrm{rel}}_{r}$$

Homological representation of $U_q^{\frac{L}{2}}\mathfrak{sl}(2)$

From now on $t=q^{-2}$, so that $\mathcal{R}_{\mathsf{max}}=\mathbb{Z}\left[q^{\pm 1},q^{\pm \alpha_1},\ldots,q^{\alpha_n}\right]$

$$(V^{\alpha})^{\otimes n} \simeq_{\mathcal{B}_n} \bigoplus_{r \in \mathbb{N}} W_{n,r}$$



Homological representations

$$\mathcal{H}_r^{\mathsf{abs}} := \mathbf{H}_r^{lf} \left(X_r; L_r \right)$$

$$\mathcal{H}_r^{\mathsf{rel}} := \mathbf{H}_r^{lf} \left(X_r, X_r^-; L_r \right)$$

$$E$$

$$\mathcal{H}^{\mathsf{rel}}_{r-1} \underbrace{\overset{E}{\swarrow}}_{F^{(1)}} \mathcal{H}^{\mathsf{rel}}_{r}$$

Homological representation of $U_q^{\frac{L}{2}}\mathfrak{sl}(2)$

From now on $t=q^{-2}$, so that $\mathcal{R}_{\mathsf{max}}=\mathbb{Z}\left[q^{\pm \hat{1}},q^{\pm \hat{lpha}_1},\ldots,q^{lpha_n}
ight]$

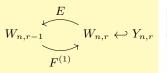
Theorem (M.)

The module $\mathcal{H}^{\alpha_1,\dots,\alpha_n}:=\bigoplus_{r\in\mathbb{N}}\mathcal{H}^{\mathrm{rel}}_r$ together with actions of $E,K^{\pm 1}$ and $F^{(k)}$ for $k\geq 1$ yields a representation of the algebra $U_q^{\frac{L}{2}}\mathfrak{sl}(2)$.

Thursday april 30th

$$D_n: {}^{w_0}oldsymbol{igwedge} egin{pmatrix} w_1 & w_2 & & & w_n \ & \bullet & & \ddots & \bullet \ & & & & \ddots & \bullet \ & & & & & \ddots & \bullet \ & & & & & & \ddots & \bullet \ & & & & & & & \ddots & \bullet \ & & & & & & & \ddots & \bullet \ & & & & & & & \ddots & \bullet \ & & & & & & & \ddots & \bullet \ & & & & & & & \ddots & \bullet \ & & & & & & & \ddots & \bullet \ \end{pmatrix}$$

$$(V^{\alpha})^{\otimes n} \simeq_{\mathcal{B}_n} \bigoplus_{r \in \mathbb{N}} W_{n,r}$$



Homological representations

$$\mathcal{H}_r^{\mathsf{abs}} := \mathrm{H}_r^{lf}\left(X_r; L_r\right)$$

$$\mathcal{H}_r^{\mathsf{rel}} := \mathrm{H}_r^{lf}\left(X_r, X_r^-; L_r\right)$$

$$\mathcal{H}^{\mathrm{rel}}_{r-1} \underbrace{ \begin{matrix} E \\ \\ F^{(1)} \end{matrix}}_{F^{(1)}} \mathcal{H}^{\mathrm{rel}}_{r}$$

Homological representation of $U_q^{\frac{L}{2}}\mathfrak{sl}(2)$

From now on $t=q^{-2}$, so that $\mathcal{R}_{\mathsf{max}}=\mathbb{Z}\left[q^{\pm \hat{1}},q^{\pm \alpha_1},\ldots,q^{\alpha_n}\right]$

Theorem (M.)

The module $\mathcal{H}^{\alpha_1,\dots,\alpha_n}:=\bigoplus_{r\in\mathbb{N}}\mathcal{H}^{\mathrm{rel}}_r$ together with actions of $E,K^{\pm 1}$ and $F^{(k)}$ for $k\geq 1$ yields a representation of the algebra $U_q^{\frac{L}{2}}\mathfrak{sl}(2)$.

Homological interpretation of $U_q^{\frac{\pi}{2}}\mathfrak{sl}(2)$ presentation

The proof relies on checking homologically:

$$\left[l\right]_{q}!F^{(l)}=\left(F^{(1)}\right)^{l} \text{ and } \left[E,F^{(1)}\right]=K-K^{-1}.$$

$$D_n$$
 : $\stackrel{w_0}{\bullet}$ $\stackrel{w_1}{\bullet}$ $\stackrel{w_2}{\bullet}$ $\stackrel{w_n}{\bullet}$ $\stackrel{w_n}{\bullet}$

$$(V^{\alpha})^{\otimes n} \simeq_{\mathcal{B}_n} \bigoplus_{r \in \mathbb{N}} W_{n,r}$$

$$W_{n,r-1} \underbrace{F^{(1)}}^{E} W_{n,r} \hookleftarrow Y_{n,r}$$

Homological representations

$$\mathcal{H}_r^{\mathsf{abs}} := \mathrm{H}_r^{lf}\left(X_r; L_r\right)$$

$$\mathcal{H}_r^{\mathsf{rel}} := \mathbf{H}_r^{lf} \left(X_r, X_r^-; L_r \right)$$

$$\mathcal{H}^{\mathsf{rel}}_{r-1} \underbrace{\overset{E}{\underset{F^{(1)}}{\bigvee}}}_{\mathcal{H}^{\mathsf{rel}}_r}$$

Homological representation of $U_q^{\frac{\nu}{2}}\mathfrak{sl}(2)$

From now on $t=q^{-2}$, so that $\mathcal{R}_{\mathsf{max}}=\mathbb{Z}\left[q^{\pm \hat{1}},q^{\pm \alpha_1},\ldots,q^{\alpha_n}\right]$

Theorem (M.)

The module $\mathcal{H}^{\alpha_1,\dots,\alpha_n}:=\bigoplus_{r\in\mathbb{N}}\mathcal{H}^{\mathrm{rel}}_r$ together with actions of $E,K^{\pm 1}$ and $F^{(k)}$ for $k\geq 1$ yields a representation of the algebra $U_q^{\frac{L}{2}}\mathfrak{sl}(2)$.

Homological interpretation of $U_q^{\frac{\pi}{2}}\mathfrak{sl}(2)$ presentation

The proof relies on checking homologically:

$$\left[l\right]_{q}!F^{(l)}=\left(F^{(1)}\right)^{l} \text{ and } \left[E,F^{(1)}\right]=K-K^{-1}.$$

It gives a homological interpretation for the following set of relations:

$$\left[E, F^{(l+1)}\right] = F^{(l)}\left(q^{-l}K - q^{l}K^{-1}\right) \text{ and } F^{(l)}F^{(m)} = \left[\begin{array}{c} l+m \\ l \end{array}\right]_{-} F^{(l+m)}$$

that completes the presentation of $U_q^{\frac{\pi}{2}}\mathfrak{sl}(2)$.

$$D_n: {}^{w_0}oldsymbol{igwedge} egin{pmatrix} w_1 & w_2 & & & w_n \ & \bullet & & \ddots & igwedge \ & \xi_r \cdots \xi_1 \end{pmatrix}}$$

$$(V^{\alpha})^{\otimes n} \simeq_{\mathcal{B}_n} \bigoplus_{r \in \mathbb{N}} W_{n,r}$$

$$W_{n,r-1} \underbrace{\overset{E}{\bigvee}}_{F^{(1)}} W_{n,r} \hookleftarrow Y_{n,r}$$

Homological representations

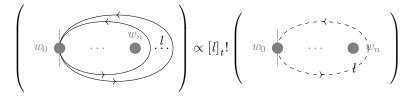
$$\mathcal{H}_r^{\mathsf{abs}} := \mathbf{H}_r^{lf}\left(X_r; L_r\right)$$

$$\mathcal{H}_r^{\mathsf{rel}} := \mathbf{H}_r^{lf}\left(X_r, X_r^-; L_r\right)$$

$$\mathcal{H}^{\mathsf{rel}}_{r-1} \underbrace{\overset{E}{\longleftarrow}}_{F^{(1)}} \mathcal{H}^{\mathsf{rel}}_{r}$$

Pieces of computations

• Idea for the divided power property:



$$D_n$$
 : w_0 w_1 w_2 w_n w_n w_n

$$(V^{\alpha})^{\otimes n} \simeq_{\mathcal{B}_n} \bigoplus_{r \in \mathbb{N}} W_{n,r}$$

$$W_{n,r-1} \underbrace{F^{(1)}}^{E} W_{n,r} \longleftrightarrow Y_{n,r}$$

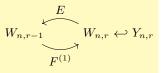
Homological representations

$$\mathcal{H}_r^{\mathsf{abs}} := \mathbf{H}_r^{lf}\left(X_r; L_r\right)$$

$$\mathcal{H}_r^{\mathsf{rel}} := \mathbf{H}_r^{lf}\left(X_r, X_r^-; L_r\right)$$

Recovering monoidality of Verma modules

$$(V^{\alpha})^{\otimes n} \simeq_{\mathcal{B}_n} \bigoplus_{r \in \mathbb{N}} W_{n,r}$$



Homological representations

$$\begin{split} \mathcal{H}^{\mathsf{abs}}_r &:= \mathrm{H}^{lf}_r\left(X_r; L_r\right) \\ \mathcal{H}^{\mathsf{rel}}_r &:= \mathrm{H}^{lf}_r\left(X_r, X_r^-; L_r\right) \\ & \underbrace{\mathcal{H}^{\mathsf{rel}}_{r-1}}_{\mathcal{H}^{\mathsf{rel}}_{r-1}} & \mathcal{H}^{\mathsf{rel}}_r \end{split}$$

Recovering monoidality of Verma modules

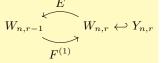
Theorem (M.)

The isomorphism of \mathcal{R}_{max} -module:

$$\begin{cases}
\mathcal{H}^{\alpha_1,\dots,\alpha_n} & \to V^{\alpha_1} \otimes \dots \otimes V^{\alpha_n} \\
A(k_0,\dots,k_{n-1}) & \mapsto v_{k_0} \otimes \dots \otimes v_{k_{n-1}}
\end{cases}$$

$$D_n: {}^{w_0}oldsymbol{\circ} oldsymbol{\circ} oldsymbol{\circ}$$

$$(V^{\alpha})^{\otimes n} \simeq_{\mathcal{B}_n} \bigoplus_{r \in \mathbb{N}} W_{n,r}$$



Homological representations

$$\begin{aligned} \mathcal{H}_r^{\mathsf{abs}} &:= \mathbf{H}_r^{lf}\left(X_r; L_r\right) \\ \mathcal{H}_r^{\mathsf{rel}} &:= \mathbf{H}_r^{lf}\left(X_r, X_r^-; L_r\right) \\ & E \end{aligned}$$

$$\mathcal{H}^{\mathsf{rel}}_{r-1} \underbrace{\overset{E}{\longleftarrow}}_{F^{(1)}} \mathcal{H}^{\mathsf{rel}}_{r}$$

Recovering monoidality of Verma modules

Theorem (M.)

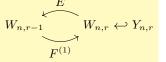
The isomorphism of \mathcal{R}_{max} -module:

$$\begin{cases}
\mathcal{H}^{\alpha_1,\dots,\alpha_n} & \to V^{\alpha_1} \otimes \dots \otimes V^{\alpha_n} \\
A(k_0,\dots,k_{n-1}) & \mapsto v_{k_0} \otimes \dots \otimes v_{k_{n-1}}
\end{cases}$$

is an isomorphism of $U_q^{rac{L}{2}}\mathfrak{sl}(2)$ -modules.

$$D_n: egin{pmatrix} w_0 & egin{pmatrix} w_1 & w_2 & \dots & w_n \ ar{\xi_r \dots \xi_1} & & & & \end{pmatrix}$$

$$(V^{\alpha})^{\otimes n} \simeq_{\mathcal{B}_n} \bigoplus_{r \in \mathbb{N}} W_{n,r}$$



Homological representations

$$\mathcal{H}_r^{\mathsf{abs}} := \mathrm{H}_r^{lf}\left(X_r; L_r\right)$$

$$\mathcal{H}_r^{\mathsf{rel}} \, := \mathrm{H}_r^{lf} \left(X_r, X_r^-; L_r
ight)$$

$$\mathcal{H}^{\mathsf{rel}}_{r-1} \underbrace{\overset{E}{\longleftarrow}}_{F^{(1)}} \mathcal{H}^{\mathsf{rel}}_{r}$$

Recovering monoidality of Verma modules

Theorem (M.)

The isomorphism of \mathcal{R}_{max} -module:

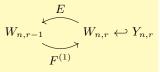
$$\begin{cases}
\mathcal{H}^{\alpha_1,\dots,\alpha_n} & \to V^{\alpha_1} \otimes \dots \otimes V^{\alpha_n} \\
A(k_0,\dots,k_{n-1}) & \mapsto v_{k_0} \otimes \dots \otimes v_{k_{n-1}}
\end{cases}$$

is an isomorphism of $U_q^{\frac{L}{2}}\mathfrak{sl}(2)$ -modules.

Idea of the proof.

Compute the action in the multi-arcs basis using homological calculus.

$$(V^{\alpha})^{\otimes n} \simeq_{\mathcal{B}_n} \bigoplus_{r \in \mathbb{N}} W_{n,r}$$



Homological representations

$$\mathcal{H}_r^{\mathsf{abs}} := \mathrm{H}_r^{lf}\left(X_r; L_r\right)$$

$$\mathcal{H}_r^{\mathsf{rel}} := \mathbf{H}_r^{lf} \left(X_r, X_r^-; L_r \right)$$

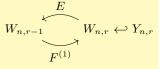
$$\mathcal{H}^{\mathrm{rel}}_{r-1} \underbrace{ \begin{matrix} E \\ \\ F^{(1)} \end{matrix}}_{F^{(1)}} \mathcal{H}^{\mathrm{rel}}_{r}$$

Recovering the quantum braid action

The action of \mathcal{B}_n on D_n extends to X_r coordinate by coordinate.

$$D_n: {\overset{w_0}{ullet}} {\overset{w_1}{ullet}} {\overset{w_2}{ullet}} {\overset{w_n}{ullet}} {\overset{w_n}{ullet}}$$

$$(V^{\alpha})^{\otimes n} \simeq_{\mathcal{B}_n} \bigoplus_{r \in \mathbb{N}} W_{n,r}$$



Homological representations

$$\mathcal{H}_r^{\mathsf{abs}} := \mathbf{H}_r^{lf} \left(X_r; L_r \right)$$

$$\mathcal{H}_r^{\mathsf{rel}} := \mathbf{H}_r^{lf} \left(X_r, X_r^-; L_r \right)$$

$$E$$

$\mathcal{H}^{\mathrm{rel}}_{r-1} \underbrace{ \begin{matrix} E \\ \\ F^{(1)} \end{matrix}}_{F^{(1)}} \mathcal{H}^{\mathrm{rel}}_{r}$

Recovering the quantum braid action

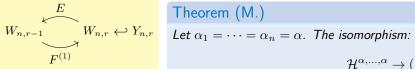
The action of \mathcal{B}_n on D_n extends to X_r coordinate by coordinate.

Lemma

The action of \mathcal{B}_n lifts to $\mathcal{H}_r^{\mathsf{rel}}$.

$$D_n$$
: $\stackrel{w_0}{\bullet}$ $\stackrel{w_1}{\bullet}$ $\stackrel{w_2}{\bullet}$ $\stackrel{w_n}{\bullet}$

$$(V^{\alpha})^{\otimes n} \simeq_{\mathcal{B}_n} \bigoplus_{r \in \mathbb{N}} W_{n,r}$$



Homological representations

$$\mathcal{H}_r^{\mathsf{abs}} := \mathrm{H}_r^{lf}\left(X_r; L_r\right)$$

$$\mathcal{H}_r^{\mathsf{rel}} := \mathbf{H}_r^{lf} \left(X_r, X_r^-; L_r \right)$$

$$E$$

$$\mathcal{H}^{\mathrm{rel}}_{r-1} \underbrace{\overset{E}{\underset{F^{(1)}}{\bigvee}}}_{\mathcal{F}^{(1)}} \mathcal{H}^{\mathrm{rel}}_{r}$$

Recovering the quantum braid action

The action of \mathcal{B}_n on D_n extends to X_r coordinate by coordinate.

Lemma

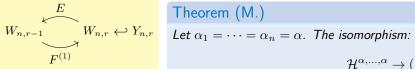
The action of \mathcal{B}_n lifts to \mathcal{H}_r^{rel} .

$$\mathcal{H}^{\alpha,\dots,\alpha} \to (V^{\alpha})^{\otimes n}$$

is an isomorphism of \mathcal{B}_n representations.

$$D_n$$
: $\stackrel{w_0}{\bullet}$ $\stackrel{w_1}{\bullet}$ $\stackrel{w_2}{\bullet}$ $\stackrel{w_n}{\bullet}$ $\stackrel{w_n}{\bullet}$

$$(V^{\alpha})^{\otimes n} \simeq_{\mathcal{B}_n} \bigoplus_{r \in \mathbb{N}} W_{n,r}$$



Homological representations

$$\mathcal{H}_r^{\mathsf{abs}} := \mathrm{H}_r^{lf}\left(X_r; L_r\right)$$

$$\mathcal{H}_r^{\mathsf{rel}} := \mathrm{H}_r^{lf}\left(X_r, X_r^-; L_r\right)$$

$$\mathcal{H}^{\mathsf{rel}}_{r-1} \underbrace{ \begin{matrix} E \\ \\ F^{(1)} \end{matrix}}_{F^{(1)}} \mathcal{H}^{\mathsf{rel}}_{r}$$

Recovering the quantum braid action

The action of \mathcal{B}_n on D_n extends to X_r coordinate by coordinate.

Lemma

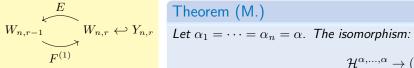
The action of \mathcal{B}_n lifts to \mathcal{H}_r^{rel} .

$$\mathcal{H}^{\alpha,...,\alpha} \to (V^{\alpha})^{\otimes n}$$

is an isomorphism of \mathcal{B}_n representations, such that $\mathcal{H}_r^{\text{rel}} \xrightarrow{\sim} W_{n,r}$.

$$D_n$$
: $\stackrel{w_0}{\bullet}$ $\stackrel{w_1}{\bullet}$ $\stackrel{w_2}{\bullet}$ $\stackrel{w_n}{\bullet}$

$$(V^{\alpha})^{\otimes n} \simeq_{\mathcal{B}_n} \bigoplus_{r \in \mathbb{N}} W_{n,r}$$



Homological representations

$$\mathcal{H}_r^{\mathsf{abs}} := \mathrm{H}_r^{lf}\left(X_r; L_r\right)$$

$$\mathcal{H}_r^{\mathsf{rel}} := \mathrm{H}_r^{lf} \left(X_r, X_r^-; L_r \right)$$

$$\mathcal{H}^{\mathsf{rel}}_{r-1} \underbrace{\overset{E}{\longleftarrow}}_{\mathcal{D}^{(1)}} \mathcal{H}^{\mathsf{rel}}_{r}$$

Recovering the quantum braid action

The action of \mathcal{B}_n on D_n extends to X_r coordinate by coordinate.

Lemma

The action of \mathcal{B}_n lifts to $\mathcal{H}_r^{\mathsf{rel}}$.

$$\mathcal{H}^{\alpha,...,\alpha} \to (V^{\alpha})^{\otimes n}$$

is an isomorphism of \mathcal{B}_n representations, such that $\mathcal{H}_r^{\text{rel}} \xrightarrow{\sim} W_{n,r}$.

Remark

There is a multi-color version but restricting representations to the *pure braid* group.

$$(V^{\alpha})^{\otimes n} \simeq_{\mathcal{B}_n} \bigoplus_{r \in \mathbb{N}} W_{n,r}$$

$$W_{n,r-1} \underbrace{\stackrel{E}{\longleftarrow}}_{F^{(1)}} W_{n,r} \hookleftarrow Y_{n,r}$$

Homological representations

$$\mathcal{H}_r^{\mathsf{abs}} := \mathrm{H}_r^{lf}\left(X_r; L_r\right)$$

$$\mathcal{H}_r^{\mathsf{rel}} := \mathbf{H}_r^{lf} \left(X_r, X_r^-; L_r \right)$$

$$\mathcal{H}^{\mathrm{rel}}_{r-1} \underbrace{ \begin{matrix} E \\ \\ F^{(1)} \end{matrix}}_{F} \mathcal{H}^{\mathrm{rel}}_{r}$$

Pieces of computations

$$\sigma_{1} \cdot \begin{pmatrix} w_{0} & w_{1} & w_{2} \\ & & & \\ &$$

$$D_n: {}^{w_0} egin{pmatrix} {}^{w_1} & {}^{w_2} & {}^{w_n} \\ {}^{\xi_r \cdots \xi_1} & {}^{\xi_n} & {}^{\xi_n} \end{pmatrix}$$

$$(V^{\alpha})^{\otimes n} \simeq_{\mathcal{B}_n} \bigoplus_{r \in \mathbb{N}} W_{n,r}$$

$$W_{n,r-1} \underbrace{\overset{E}{\bigvee}}_{F^{(1)}} W_{n,r} \hookleftarrow Y_{n,r}$$

Homological representations

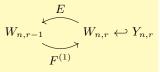
$$\mathcal{H}_r^{\mathsf{abs}} := \mathrm{H}_r^{lf}\left(X_r; L_r\right)$$

$$\mathcal{H}_r^{\mathsf{rel}} := \mathcal{H}_r^{lf} \left(X_r, X_r^-; L_r \right)$$

$$\mathcal{H}^{\mathsf{rel}}_{r-1} \underbrace{\overset{E}{\longleftarrow}}_{F^{(1)}} \mathcal{H}^{\mathsf{re}}_{r}$$

$$D_n: {\scriptstyle w_0 \ \bigoplus_{\xi_r \cdots \xi_1}^{w_1 \ w_2} \ \bigoplus_{\xi_r \in \xi_1}^{w_n}}$$
 Summary

$$(V^{\alpha})^{\otimes n} \simeq_{\mathcal{B}_n} \bigoplus_{r \in \mathbb{N}} W_{n,r}$$



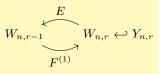
Homological representations

$$\begin{split} \mathcal{H}^{\mathsf{abs}}_r &:= \mathbf{H}^{lf}_r\left(X_r; L_r\right) \\ \mathcal{H}^{\mathsf{rel}}_r &:= \mathbf{H}^{lf}_r\left(X_r, X_r^-; L_r\right) \\ & \underbrace{\mathcal{H}^{\mathsf{rel}}_r}_{F^{(1)}} & \underbrace{\mathcal{H}^{\mathsf{rel}}_r}_{F} \end{split}$$

Lemma (Relative exact sequence)

$$0 \to \mathcal{H}_r^{\mathsf{abs}} \to \mathcal{H}_r^{\mathsf{rel}} \xrightarrow{\partial_*} H_{r-1}(X_r^-; L_r) \to 0.$$

$$(V^{\alpha})^{\otimes n} \simeq_{\mathcal{B}_n} \bigoplus_{r \in \mathbb{N}} W_{n,r}$$



Homological representations

$$\mathcal{H}_r^{\mathsf{abs}} := \mathbf{H}_r^{lf}(X_r; L_r)$$

$$\mathcal{H}_r^{\mathsf{rel}} := \mathbf{H}_r^{lf}(X_r, X_r^-; L_r)$$

$\mathcal{H}^{\mathrm{rel}}_{r-1} \underbrace{\qquad}_{\mathcal{H}^{\mathrm{rel}}_r} \leftarrow \mathcal{H}^{\mathrm{abs}}_r$

Lemma (Relative exact sequence)

$$0 \to \mathcal{H}_r^{\mathsf{abs}} \to \mathcal{H}_r^{\mathsf{rel}} \xrightarrow{\partial_*} H_{r-1}(X_r^-; L_r) \to 0.$$

Corollary (Integral version for Kohno's theorem)

$$\mathcal{H}_r^{abs} \xrightarrow{\sim} (W_{n,r} \cap Ker E) = Y_{n,r}$$

$$D_n: {}^{w_0} egin{pmatrix} {}^{w_1} & {}^{w_2} & {}^{w_n} \\ {}^{\xi_r \cdots \xi_1} & {}^{\bullet} & {}^{\bullet} & {}^{\bullet} \end{pmatrix}$$
 Lemma (Re

$$(V^{\alpha})^{\otimes n} \simeq_{\mathcal{B}_n} \bigoplus_{r \in \mathbb{N}} W_{n,r}$$

$$W_{n,r-1} \underbrace{\overset{E}{\bigvee}}_{F^{(1)}} W_{n,r} \hookleftarrow Y_{n,r}$$

Homological representations

$$\begin{split} \mathcal{H}_r^{\mathsf{abs}} &:= \mathbf{H}_r^{lf}\left(X_r; L_r\right) \\ \mathcal{H}_r^{\mathsf{rel}} &:= \mathbf{H}_r^{lf}\left(X_r, X_r^-; L_r\right) \\ & \underbrace{E} \\ \mathcal{H}_{r-1}^{\mathsf{rel}} & \underbrace{\mathcal{H}_r^{\mathsf{rel}}} & \overset{}{\hookleftarrow} \mathcal{H}_r^{\mathsf{abs}} \end{split}$$

Lemma (Relative exact sequence)

$$0 \to \mathcal{H}_r^{\mathsf{abs}} \to \mathcal{H}_r^{\mathsf{rel}} \xrightarrow{\partial_*} H_{r-1}(X_r^-; L_r) \to 0.$$

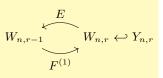
Corollary (Integral version for Kohno's theorem)

$$\mathcal{H}_r^{abs} \xrightarrow{\sim} (W_{n,r} \cap Ker E) = Y_{n,r}$$

• Lawrence's representations are extended to relative homology.

$$D_n: {}^{w_0} egin{pmatrix} {}^{w_1} & {}^{w_2} & {}^{w_n} \\ {}^{\xi_r \cdots \xi_1} & {}^{\bullet} & {}^{\bullet} & {}^{\bullet} \end{pmatrix}$$
 Lemma (Re

$$(V^{\alpha})^{\otimes n} \simeq_{\mathcal{B}_n} \bigoplus_{r \in \mathbb{N}} W_{n,r}$$



Homological representations

$$\mathcal{H}_r^{\mathsf{abs}} := \mathrm{H}_r^{lf}\left(X_r; L_r\right)$$

$$\mathcal{H}_r^{\mathsf{rel}} := \mathrm{H}_r^{lf} \left(X_r, X_r^-; L_r \right)$$

$$\mathcal{H}^{\mathsf{rel}}_{r-1} \underbrace{\overset{E}{\longleftarrow}}_{F^{(1)}} \mathcal{H}^{\mathsf{rel}}_r \hookleftarrow \mathcal{H}^{\mathsf{abs}}_r$$

Lemma (Relative exact sequence)

$$0 \to \mathcal{H}_r^{\text{abs}} \to \mathcal{H}_r^{\text{rel}} \xrightarrow{\partial_*} H_{r-1}(X_r^-; L_r) \to 0.$$

Corollary (Integral version for Kohno's theorem)

$$\mathcal{H}_r^{abs} \xrightarrow{\sim} (W_{n,r} \cap Ker E) = Y_{n,r}$$

- Lawrence's representations are extended to relative homology.
- Kohno's theorem is extended in two directions:
 - ▶ From $q, \alpha \in \mathbb{C}$ to working with $\mathbb{Z}\left[q^{\pm 1}, q^{\pm \alpha}\right]$,
 - From $Y_{n,r}$ to the full $W_{n,r}$, so to the entire $(V^{\alpha})^{\otimes n}$.

$$(V^{\alpha})^{\otimes n} \simeq_{\mathcal{B}_n} \bigoplus_{r \in \mathbb{N}} W_{n,r}$$

$$W_{n,r-1} \underbrace{\overset{E}{\bigvee}}_{F^{(1)}} W_{n,r} \hookleftarrow Y_{n,r}$$

Homological representations

$$\mathcal{H}_r^{\mathsf{abs}} := \mathrm{H}_r^{lf}\left(X_r; L_r\right)$$

$$\mathcal{H}_r^{\mathsf{rel}} := \mathbf{H}_r^{lf} \left(X_r, X_r^-; L_r \right)$$

$$\mathcal{H}^{\mathrm{rel}}_{r-1} \underbrace{\overset{E}{\longleftarrow}}_{F^{(1)}} \mathcal{H}^{\mathrm{rel}}_r \longleftrightarrow \mathcal{H}^{\mathrm{abs}}_r$$

Summary

Lemma (Relative exact sequence)

$$0 \to \mathcal{H}_r^{\mathsf{abs}} \to \mathcal{H}_r^{\mathsf{rel}} \xrightarrow{\partial_*} H_{r-1}(X_r^-; L_r) \to 0.$$

Corollary (Integral version for Kohno's theorem)

$$\mathcal{H}_r^{abs} \xrightarrow{\sim} (W_{n,r} \cap Ker E) = Y_{n,r}$$

- Lawrence's representations are extended to relative homology.
- Kohno's theorem is extended in two directions:
 - From $q, \alpha \in \mathbb{C}$ to working with $\mathbb{Z}\left[q^{\pm 1}, q^{\pm \alpha}\right]$,
 - From $Y_{n,r}$ to the full $W_{n,r}$, so to the entire $(V^{\alpha})^{\otimes n}$.
- Homological interpretation for the action of $U_q^{\frac{L}{2}}\mathfrak{sl}(2)$.

$$D_n: {\scriptstyle w_0 \ \bigoplus_{\xi_r \cdots \xi_1}^{w_1 \ w_2} \ \bigoplus_{\xi_r \in \xi_1}^{w_n}}$$
 Summary

$$(V^{\alpha})^{\otimes n} \simeq_{\mathcal{B}_n} \bigoplus_{r \in \mathbb{N}} W_{n,r}$$

$$W_{n,r-1} \underbrace{\overset{E}{\bigvee}}_{F^{(1)}} W_{n,r} \hookleftarrow Y_{n,r}$$

Homological representations

$$\mathcal{H}_r^{\mathsf{abs}} := \mathrm{H}_r^{lf}\left(X_r; L_r\right)$$

$$\mathcal{H}_r^{\mathsf{rel}} := \mathbf{H}_r^{lf} \left(X_r, X_r^-; L_r \right)$$

$$\mathcal{H}^{\mathrm{rel}}_{r-1} \underbrace{ \begin{matrix} E \\ \\ F^{(1)} \end{matrix}}_{F^{(1)}} \mathcal{H}^{\mathrm{rel}}_{r} \ \longleftrightarrow \mathcal{H}^{\mathrm{abs}}_{r}$$

Lemma (Relative exact sequence)

$$0 \to \mathcal{H}_r^{\mathsf{abs}} \to \mathcal{H}_r^{\mathsf{rel}} \xrightarrow{\partial_*} H_{r-1}(X_r^-; L_r) \to 0.$$

Corollary (Integral version for Kohno's theorem)

$$\mathcal{H}_r^{abs} \xrightarrow{\sim} (W_{n,r} \cap Ker E) = Y_{n,r}$$

- Lawrence's representations are extended to relative homology.
- Kohno's theorem is extended in two directions:
 - ▶ From $q, \alpha \in \mathbb{C}$ to working with $\mathbb{Z}\left[q^{\pm 1}, q^{\pm \alpha}\right]$,
 - From $Y_{n,r}$ to the full $W_{n,r}$, so to the entire $(V^{\alpha})^{\otimes n}$.
- Homological interpretation for the action of $U_a^{\frac{L}{2}}\mathfrak{sl}(2)$.

We provide homological relations between multi-arcs and bases from the literature clarifying previously required generic conditions.

$$D_n$$
: $\stackrel{w_0}{\bullet}$ $\stackrel{w_1}{\bullet}$ $\stackrel{w_2}{\bullet}$ $\stackrel{w_n}{\bullet}$ $\stackrel{w_n}{\bullet}$

$$(V^{\alpha})^{\otimes n} \simeq_{\mathcal{B}_n} \bigoplus_{r \in \mathbb{N}} W_{n,r}$$

$$W_{n,r-1} \underbrace{\overset{E}{\bigvee}}_{F^{(1)}} W_{n,r} \hookleftarrow Y_{n,r}$$

Homological representations

$$\mathcal{H}_r^{\mathsf{abs}} := \mathrm{H}_r^{lf}\left(X_r; L_r\right)$$

$$\mathcal{H}_r^{\mathsf{rel}} := \mathrm{H}_r^{lf}\left(X_r, X_r^-; L_r\right)$$

$$\mathcal{H}^{\mathsf{rel}}_{r-1} \underbrace{\bigvee_{E^{(1)}}}_{E^{(1)}} \mathcal{H}^{\mathsf{rel}}_r \hookleftarrow \mathcal{H}^{\mathsf{abs}}_r$$

Summary

Lemma (Relative exact sequence)

$$0 \to \mathcal{H}_r^{\mathsf{abs}} \to \mathcal{H}_r^{\mathsf{rel}} \xrightarrow{\partial_*} H_{r-1}(X_r^-; L_r) \to 0.$$

Corollary (Integral version for Kohno's theorem)

$$\mathcal{H}_r^{abs} \xrightarrow{\sim} (W_{n,r} \cap Ker E) = Y_{n,r}$$

- Lawrence's representations are extended to relative homology.
- Kohno's theorem is extended in two directions:
 - ▶ From $q, \alpha \in \mathbb{C}$ to working with $\mathbb{Z}\left[q^{\pm 1}, q^{\pm \alpha}\right]$,
 - From $Y_{n,r}$ to the full $W_{n,r}$, so to the entire $(V^{\alpha})^{\otimes n}$.
- Homological interpretation for the action of $U_q^{\frac{L}{2}}\mathfrak{sl}(2)$.

We provide homological relations between multi-arcs and bases from the literature clarifying previously required generic conditions. We answer Felder and Wieczerkowski's conjectures.

$$D_n$$
 : w_0 w_1 w_2 w_n w_n w_n w_n

$D_n: {}^{w_0} \bigcirc {}^{w_1} \bigcirc {}^{w_2} \bigcirc {}^{w_n} \bigcirc {}^{w_n}$ Application to knot theory (in progress)

Quantum representations

$$(V^{\alpha})^{\otimes n} \simeq_{\mathcal{B}_n} \bigoplus_{r \in \mathbb{N}} W_{n,r}$$

$$W_{n,r-1} \underbrace{\overset{E}{\bigvee}}_{F^{(1)}} W_{n,r} \hookleftarrow Y_{n,r}$$

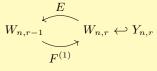
Homological representations

$$\mathcal{H}_r^{\mathsf{abs}} := \mathrm{H}_r^{lf}\left(X_r; L_r\right)$$

$$\mathcal{H}_r^{\mathsf{rel}} := \mathbf{H}_r^{lf} \left(X_r, X_r^-; L_r \right)$$

$$\mathcal{H}^{\mathsf{rel}}_{r-1} \underbrace{\overset{E}{\longleftarrow}}_{E^{(1)}} \mathcal{H}^{\mathsf{rel}}_r \hookleftarrow \mathcal{H}^{\mathsf{abs}}_r$$

$$(V^{\alpha})^{\otimes n} \simeq_{\mathcal{B}_n} \bigoplus_{r \in \mathbb{N}} W_{n,r}$$



Homological representations

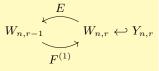
$$\begin{split} \mathcal{H}_r^{\text{abs}} &:= \mathbf{H}_r^{lf}\left(X_r; L_r\right) \\ \mathcal{H}_r^{\text{rel}} &:= \mathbf{H}_r^{lf}\left(X_r, X_r^-; L_r\right) \\ & \underbrace{E} \\ \mathcal{H}_{r-1}^{\text{rel}} & \underbrace{\mathcal{H}_r^{\text{rel}}} & \overset{\leftarrow}{\leftarrow} \mathcal{H}_r^{\text{abs}} \end{split}$$

Application to knot theory (in progress)

Notations

ullet Let $J_K(l)$ be the *l-colored Jones polynomial* of a knot K

$$(V^{\alpha})^{\otimes n} \simeq_{\mathcal{B}_n} \bigoplus_{r \in \mathbb{N}} W_{n,r}$$



Homological representations

$$\begin{split} \mathcal{H}_r^{\mathsf{abs}} &:= \mathbf{H}_r^{lf}\left(X_r; L_r\right) \\ \mathcal{H}_r^{\mathsf{rel}} &:= \mathbf{H}_r^{lf}\left(X_r, X_r^-; L_r\right) \\ & \underbrace{E}_{\mathcal{H}_{r-1}^{\mathsf{rel}}} & \underbrace{\mathcal{H}_r^{\mathsf{rel}}}_{r} & \hookrightarrow \mathcal{H}_r^{\mathsf{abs}} \end{split}$$

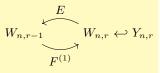
Application to knot theory (in progress)

Notations

• Let $J_K(l)$ be the l-colored Jones polynomial of a knot K (computed using the l-dimensional simple module of $U_q\mathfrak{sl}(2)$).

$$D_n$$
 : $\stackrel{w_0}{\bullet}$ $\stackrel{w_1}{\bullet}$ $\stackrel{w_2}{\bullet}$ $\stackrel{w_n}{\bullet}$ $\stackrel{w_n}{\bullet}$

$$(V^{\alpha})^{\otimes n} \simeq_{\mathcal{B}_n} \bigoplus_{r \in \mathbb{N}} W_{n,r}$$



Homological representations

$$\begin{split} \mathcal{H}^{\mathsf{abs}}_r &:= \mathbf{H}^{lf}_r\left(X_r; L_r\right) \\ \mathcal{H}^{\mathsf{rel}}_r &:= \mathbf{H}^{lf}_r\left(X_r, X_r^-; L_r\right) \\ & \underbrace{\qquad \qquad \qquad }_{\mathcal{H}^{\mathsf{rel}}_{r-1}} & \underbrace{\qquad \qquad }_{\mathcal{H}^{\mathsf{rel}}_r} & \longleftrightarrow \mathcal{H}^{\mathsf{abs}}_r \end{split}$$

Application to knot theory (in progress)

Notations

- Let $J_K(l)$ be the *l-colored Jones polynomial* of a knot K (computed using the *l*-dimensional simple module of $U_q\mathfrak{sl}(2)$).
- Let f be a mapping class acting on a topological space X, we denote the abelianized Lefschetz number of f by $\mathcal{L}_H(f,X)$.

$$D_n: egin{pmatrix} w_1 & w_2 & w_n \ & \bullet & \cdots & \bullet \ & & \ddots & \bullet \ & & & \ddots & \bullet \ & & & & \ddots & \bullet \ \end{pmatrix}$$

$$(V^{\alpha})^{\otimes n} \simeq_{\mathcal{B}_n} \bigoplus_{r \in \mathbb{N}} W_{n,r}$$

$$W_{n,r-1} \underbrace{\overset{E}{\bigvee}}_{F^{(1)}} W_{n,r} \hookleftarrow Y_{n,r}$$

Homological representations

$$\mathcal{H}_r^{\mathsf{abs}} := \mathbf{H}_r^{lf}(X_r; L_r)$$

$$\mathcal{H}_r^{\mathsf{rel}} := \mathbf{H}_r^{lf}(X_r, X_r^-; L_r)$$

$$\mathcal{H}^{\mathsf{rel}}_{r-1} \underbrace{\overset{E}{\longleftarrow}}_{\mathcal{D}(1)} \mathcal{H}^{\mathsf{rel}}_r \longleftrightarrow \mathcal{H}^{\mathsf{abs}}_r$$

Application to knot theory (in progress)

Notations

- Let $J_K(l)$ be the *l-colored Jones polynomial* of a knot K (computed using the *l*-dimensional simple module of $U_q\mathfrak{sl}(2)$).
- Let f be a mapping class acting on a topological space X, we denote the abelianized Lefschetz number of f by $\mathcal{L}_H(f,X)$.

Theorem (M.)

Let K be the closure of a braid $\beta \in \mathcal{B}_n$, then:

$$J_K(l+1) = \Lambda q^{-nl} \sum_{r=0}^{nl} (-1)^r \mathcal{L}_H \left(\beta, (X_r, X_r^-) \right)_{|\alpha_i| = l} q^{2r},$$

where Λ is an invertible coefficient.

$$D_n$$
: $\stackrel{w_0}{\bullet}$ $\stackrel{w_1}{\bullet}$ $\stackrel{w_2}{\bullet}$ $\stackrel{w_n}{\bullet}$ $\stackrel{w_n}{\bullet}$

$$(V^{\alpha})^{\otimes n} \simeq_{\mathcal{B}_n} \bigoplus_{r \in \mathbb{N}} W_{n,r}$$

$$W_{n,r-1} \underbrace{\overset{E}{\bigvee}}_{F^{(1)}} W_{n,r} \hookleftarrow Y_{n,r}$$

Homological representations

$$\mathcal{H}^{\mathsf{abs}}_r := \mathrm{H}^{lf}_r\left(X_r; L_r
ight) \ \mathcal{H}^{\mathsf{rel}}_r := \mathrm{H}^{lf}_r\left(X_r, X_r^-; L_r
ight) \ \mathcal{H}^{\mathsf{rel}}_{r-1} \underbrace{\mathcal{H}^{\mathsf{rel}}_r\left(\mathcal{H}^{\mathsf{rel}}_r + \mathcal{H}^{\mathsf{abs}}_r\right)}_{F^{(1)}} \mathcal{H}^{\mathsf{rel}}_r \longleftrightarrow \mathcal{H}^{\mathsf{abs}}_r$$

Thank you for your attention

$$D_n$$
: $v_0 egin{pmatrix} v_1 & v_2 & & w_n \ & \bullet & \cdots & \bullet \ \end{bmatrix}$

$$(V^{\alpha})^{\otimes n} \simeq_{\mathcal{B}_n} \bigoplus_{r \in \mathbb{N}} W_{n,r}$$

$$W_{n,r-1} \underbrace{\overset{E}{\bigvee}}_{F^{(1)}} W_{n,r} \hookleftarrow Y_{n,r}$$

Homological representations

$$\begin{aligned} \mathcal{H}_r^{\mathsf{abs}} &:= \mathbf{H}_r^{lf}\left(X_r; L_r\right) \\ \mathcal{H}_r^{\mathsf{rel}} &:= \mathbf{H}_r^{lf}\left(X_r, X_r^-; L_r\right) \end{aligned}$$

$$\mathcal{H}^{\mathrm{rel}}_{r-1} \underbrace{ \begin{matrix} E \\ \\ \\ F^{(1)} \end{matrix}}_{F^{(1)}} \mathcal{H}^{\mathrm{rel}}_r \hookleftarrow \mathcal{H}^{\mathrm{abs}}_r$$

• Idea for $[E, F^{(1)}]$:

$$D_n$$
: $\stackrel{w_0}{\bullet}$ $\stackrel{w_1}{\bullet}$ $\stackrel{w_2}{\bullet}$ $\stackrel{w_n}{\bullet}$ $\stackrel{w_n}{\bullet}$

$$(V^{\alpha})^{\otimes n} \simeq_{\mathcal{B}_n} \bigoplus_{r \in \mathbb{N}} W_{n,r}$$

$$W_{n,r-1} \underbrace{\overset{E}{\bigvee}}_{F^{(1)}} W_{n,r} \hookleftarrow Y_{n,r}$$

Homological representations

$$\mathcal{H}_r^{\mathsf{abs}} := \mathbf{H}_r^{lf} \left(X_r; L_r \right)$$

$$\mathcal{H}_r^{\mathsf{rel}} := \mathbf{H}_r^{lf} \left(X_r, X_r^-; L_r \right)$$

$$E$$

$$\mathcal{H}^{\mathrm{rel}}_{r-1} \underbrace{ \underbrace{ F^{(1)}}_{F^{(1)}} }^{E} \mathcal{H}^{\mathrm{rel}}_{r} \hookleftarrow \mathcal{H}^{\mathrm{abs}}_{r}$$

• Idea for $\left[E,F^{(1)}\right]$:

$$-E \cdot \left(\begin{array}{c} \\ \\ \\ \\ \end{array} \right) = \left(\begin{array}{c} \\ \\ \\ \end{array} \right) + C \times U(k_0, \dots, k_{n-1})$$

Quantum representations $(V^{\alpha})^{\otimes n} \simeq_{\mathcal{B}_n} \bigoplus W_{n,r}$

$$E$$
 $-B_n \bigcup_{r \in \mathbb{N}} m$

$$W_{n,r-1} \underbrace{\overset{E}{\bigvee}}_{F^{(1)}} W_{n,r} \hookleftarrow Y_{n,r}$$

Homological representations

$$\mathcal{H}_r^{\mathsf{abs}} := \mathbf{H}_r^{lf} \left(X_r; L_r \right)$$
$$\mathcal{H}_r^{\mathsf{rel}} := \mathbf{H}_r^{lf} \left(X_r, X_r^-; L_r \right)$$

$$\mathcal{H}^{\mathsf{rel}}_{r-1} \underbrace{\overset{E}{\longleftarrow}}_{F^{(1)}} \mathcal{H}^{\mathsf{rel}}_r \hookleftarrow \mathcal{H}^{\mathsf{abs}}_r$$