KOS 1 introduction

Shake slice knots

Based on foint nock inth: Peter Feller, Allison N. Miller, Matthias Nagel, Patrick Orson, and Arunima Ray.

Knot traces are compact 4-mantilels n. J.

KES3 knot

 $\chi_{p}(\kappa)$

 $\partial X_n(K) = S_n^3(K) | X_n(K) = S^2$.

in handle notation

n- shake slies it a generator

 $\pi_2(X_n(k)) = \mathbb{Z}$

by a wealth flat embedded 52 = Xn(k)

X_n(K)

Prop,

K strie \Rightarrow K is n-shake stein bounds for flat $\forall n$. $P^2 \subseteq P^4$.

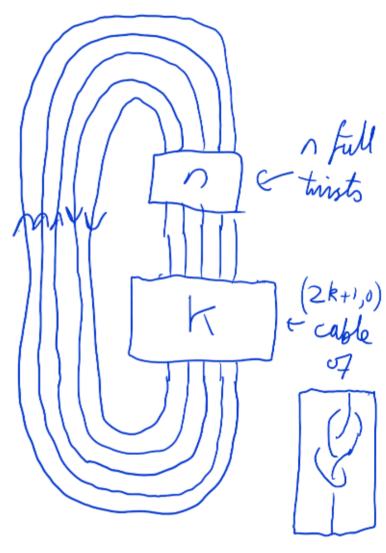
Open Q: Does O-shake slice (both smooth and J slice? top)

Equivalent tomulation

The n-shakings of K are the

(2R+1) - component oriented lenks $S_{2k+1,n}(K) \qquad k > 0$ built as follows:

eg 2k+1 =5

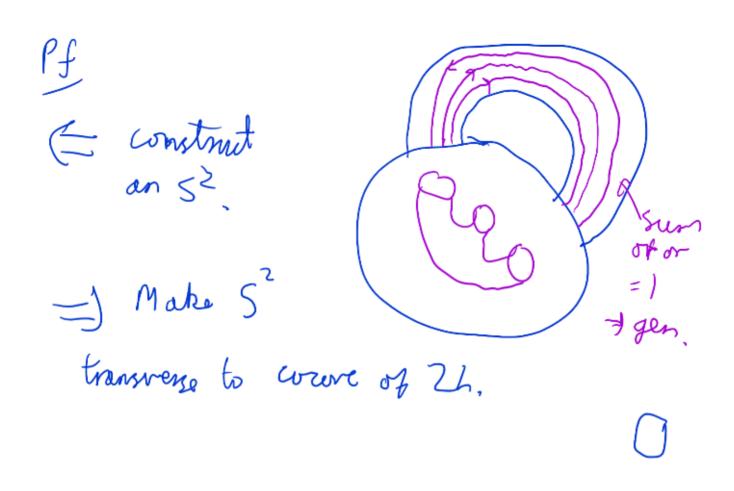


Prop'

K is n-shake slie if and only if

S_2k+1, n (k) bounds a locally flat

connected 2k+1, n of for some k.



In general!

N-Shake shie \$\square\$ Shie Akbulut

(for some n)

N-Shake shie \$\square\$ m shake using \$\tau_{L-sign}\$.

\$\tau_{\pm} \tau_{m}\$.

top n-shake \neq smoothly Lukonish slice n-shake $\frac{79}{800}$ Borger $\frac{8}{82}$ More on these disparities later.

KOS 2 obstructions

Recall some bearic knot invariants: Every knot bounds a Seifert sustaus, F.

Seifest form A:H, (F:2) XH, (F.2)

 $ey \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$

F, A choises, but lead to invariants?

1) $\Delta_{K}(t) := \det(tA - A^{T})$ $\in \mathbb{Z}(t^{\pm 1})$ monomials

2) OK (W) := Sujn ((1-W)A+(1-W)A) 6 2 $w \in S' \subseteq \mathbb{C}$.

3) AH(K) EZ

Shake shie obstructions

Prop 1) If In such that K is n-shake shie, then AA (K)=0

(Robertello)

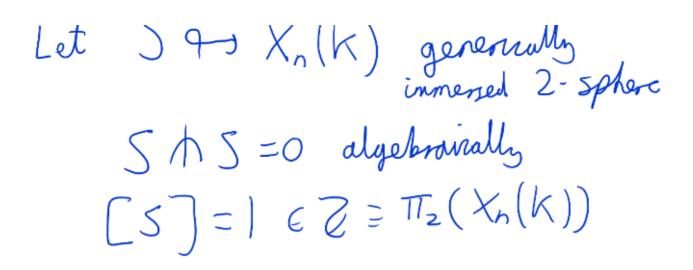
2) If K is n-shake shie then
$$\sigma_{K}(\vec{r},\vec{r})=0$$

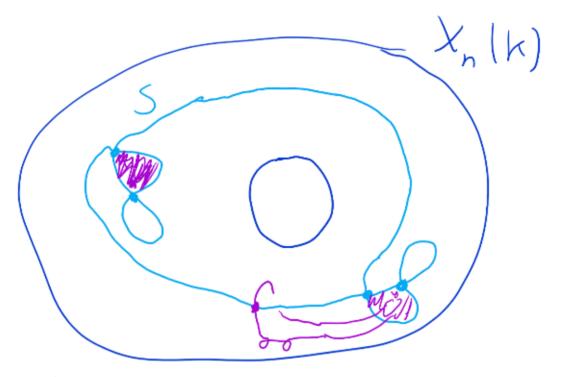
When $\sigma_{K}(\vec{r},\vec{r})=0$

Proof UF 1)

(Different from Robertello's and Tristrom's).

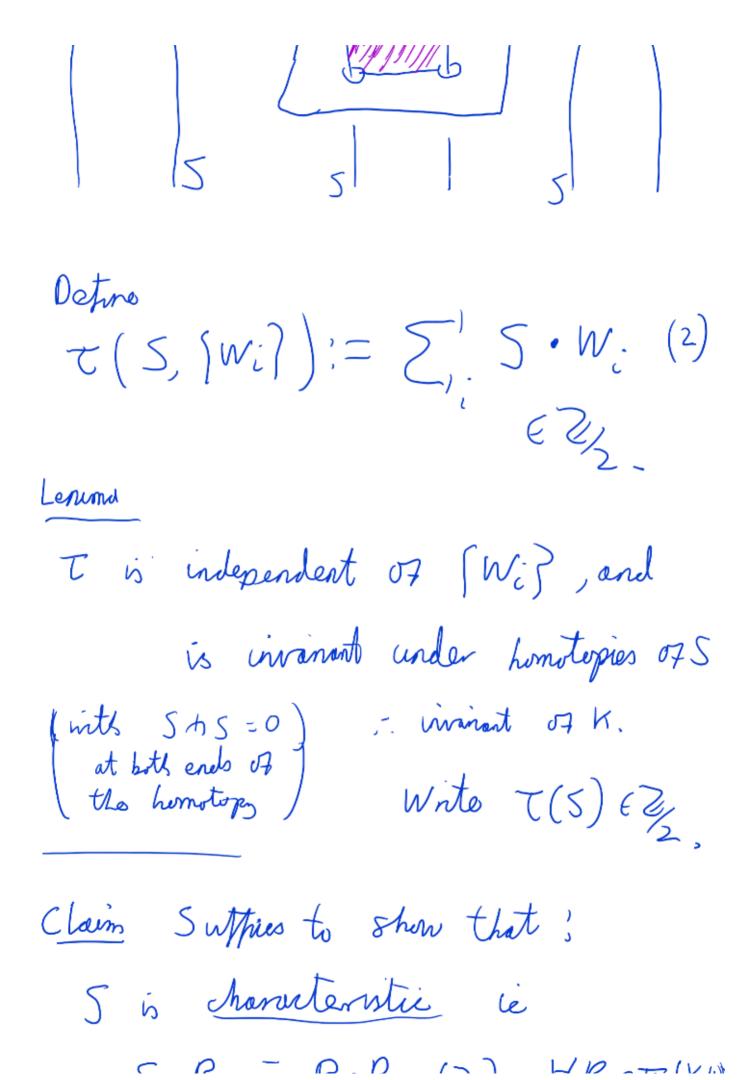
Define a knot invariant $\tau(s)$





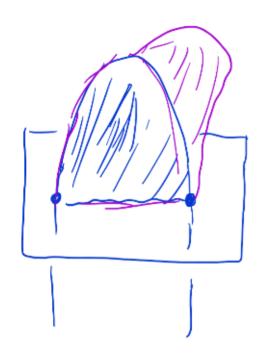
TI, $(X_n(K)) = 0$ I pai up double pts nik framed Whitnes disis. $W_i \hookrightarrow X_n(K)$

Standard model



J.V = 16.K (5) NVEIIZKIN

I dea 2 Whitney discs with some I union no on $S^2 = R$.



S-R+R-R measures the difference in the contributions of the two Wh discis to Z.

Compute homologically:

[R]=R & Z = TZ(Xn(K))

(5)=1

5.R + R.R = 1.n.k + k.n.k.

$$= n(k+k^2) = 0$$
 (2)
so 5 is characteristic.

If K is no shake slie = T(5)=0

But
$$D \rightarrow D^2$$
 $D \rightarrow K$
 $D \rightarrow D = 0$

At $K = E'_i W_i \cdot D$ (2)

ey. (ha-Orr-P. / originally 1,)

Math 7. Freedman-Murby Matsumoto Use 5 = D v D'x[0] $\tau(s) = Af(k)$ n-shake slice & T(5)=0 3 AA (K) 50. Recall (2): Kn-shake slice =) 03 (K) =0 3 = e 2 Til/pa p° prime poner. pa n. Pf A (2) If K n- shake slive, Xn (K) decomposes: $5^{3}_{n}(k)$ 21-hom L(n,1) $VS-95^{2}$ oule non.

W be some coberdism $(W:S_{n}^{3}(K),L(n,I))$ W Z/ - core 2, M2(W:C) Vb: Wh-eigenspule λ_R: V_R × V_R → Œ int' from restruted Ok (W) := Sup ()k)

$$\sigma_{wh}(K) = \sigma_{k}(\widetilde{w}) - \sigma(w)$$

Tristras-Leine signaturo (30 invariant)

Proof

Atujah - Singer Casson - Sordon

G - signature this.

Now, Kn-shake slice

=) W Z-hom wherdism.

 $\int V_{k}=0 \quad \text{who prime pere nool of } I,$

 $= \int_{3}^{3} (K) = 0$ $= \rho^{a} - th \quad \text{with} \quad 0 = 1$

pa primo porer pa | n.

Now you have some mays to obstruct - many knots are not n-shake slice.

Next we add an extra condition: $T, (X_n(K)|S)$ is abelian. $E = Z_n$.

We say K is Z_n -shake slice if this holds,

ph (- 2)

Imp
$$(N=0)$$

K is \mathbb{Z} - shake slie if and only if $A_{k}=1$.

Proof $(=)$
 $A_{k}=1$
 $A_{k}=1$

 $\exists \Delta_{k}=1,$ ∇ .

Theorem (mile Feller, AN Miller, Nagel
Orson, and Ray)
A knot K c 53 is 2/2 - shake slice
if and only if
1) Ad K = 0
2) $\sigma_{\kappa}(7)=0$ $\forall \xi \in S^{2}$ with $\xi^{2}=1$.
(not first prime power roots of 1.) $\Delta_{K}(?) = 1$
$(7/3^2=1)$
$= H_1(\Sigma_{101}(K)) $

ie obstructions from before

+ natural modification of $\Lambda = 1$

Almost did only if proof, so leave it there. Proof of "It" a cobordism over $L(n,1) \times I$ C onstruct W Ild with degree one (normal) maps. $\left(\begin{array}{c} \\ \end{array}\right) L(n,1) \times I$ There is a surgery obstruction in Ly (Z(E/n)) the Witt group of non-singular, hermitium, sesquitirear

Lenma

Art
$$(K) = T(S) = ks(X)$$

 $(S \hookrightarrow X_n(K))$
Then Art $(K) = 0$ $\Rightarrow ks(X) = 6$
 $\Rightarrow X = X_n(K)$
 $\Rightarrow K = X_n(K)$

Shetch pt of lemma

$$CP^{2} = 0$$

$$E(X \cup -X, (K)) = bs(X) + bs(X, (K))$$

$$= bs(X)$$

$$CP^{2} + CP^{2}$$

$$SO Z = (CP^{2} + CP^{2} + bs(X) = 0)$$

$$CP^{2} + CP^{2} + bs(X) = 0$$

$$CP^{2}$$

Spheres.

Corollonies to main theorem
(all FMNOPR)
1) There are or top comordane
classes of knots that are n-shake
slice & prince pomers n.
(In particular not slue,)
Pf Take J with $\Delta_J = \emptyset_m(t)$
onsider J#-J. (cyclotomic poly)
3 so many top cone classes with
Forme Seitert forms (Tachee Kin)
All are n- Shake Slice for n prime power
2) Ho 7 (or two come classes of)

knots that are n-shake slice but not smoothly n-shake slice.

PS Cn, (Tp,q) for suitable pg

3) If mfn, F (∞ top cene classes of) knots that are n shake slice but not m-shake slice.

Pf (Tp,q)

4) m/n K Z/n shake slice

5) K n shake slies for some n, then K is 1-shake slies (=) AAK)

- 6) K = shake = Kis =/(-n) shake slice.
- 7) K, J = Shake slie

 = K#J is two,
- 8) I infinitely many knoto [Ki]

 distinct in concordance and an infinite

 family of integers [n] such that $S_{n;}^{3}(K_{i})$ homology abordant to $S_{n;}^{3}(u)$ $=L(n_{i},l)$ $\forall i,j$.

Some open questions

- Does K n shake slice = K (-n) - shake slue? - Does K.J. n shake slice = K#J n shake slice? - Does O-shake slive → slive? - Does (53 (K) hom cobordant to Sn(J) 40) ⇒ K convordant to J? - Higher order obstructions! (topologically)
does algebraically slies => n shake
slies \forall n \n \n \text{0}? - 15 every topologically n-shake slive knot topologically concordent to a smoothly n shake slive knot?