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Slice Knots

Definition
Let K ⊂ S3 be a knot and i : S1 → K a smooth embedding. Then
K is called slice, if i extends to a smooth embedding j : D2 → D4.

For example, if K is a knot and K its mirror, then K#K is slice.

Definition
The smooth concordance group C is the set of concordance classes
of knots, where K1,K2 are concordant if and only if K1#K2 is slice.

Connected sum turns it into an abelian group.

Dunfield–Gong have a project to classify all prime slice knots with
up to 19 crossings. Of the roughly 352 million such knots only
about 17 thousand have open slice status (Dec ’23). They found
about 1.6 million slice knots.

Owens–Swenson studied alternating knots with up to 21 crossings.
Of 1.2 billion such knots only a bit over 3 thousand have
unresolved slice status.



Slice Obstructions

Well-known computable topological slice obstructions are

I Fox–Milnor criterion for the Alexander polynomial.

I In particular, det(K ) is square for K slice.

I The signature, sgn(K ) = 0 for K slice.

I Herald–Kirk–Livingston criterion for twisted Alexander
polynomials.

Knot homologies tend to give smooth slice obstructions, for
example,

I Heegaard Floer invariants τ , ν, and ε.

I Rasmussen’s s-invariants coming from Khovanov homology.

I Lipshitz–Sarkar refinements of the s-invariant over F2.



The Lipshitz–Sarkar refinements

Lipshitz and Sarkar defined a stable homotopy type for Khovanov
homology and as an application they got refinements sα, rα of the
Rasmussen invariant sF for any stable cohomology operation
α : H̃∗(·;F)→ H̃∗+n(·;F) with n > 0 and F a field.

These are functions sα, rα : C → 2Z satisfying

I sF(K ) ≤ rα(K ) ≤ sα(K ) ≤ sF(K ) + 2 for any knot K .

I sα(U) = rα(U) = 0 for the unknot U.

For example,

I α = Sq2: Good refinement. Slow to compute.

I α = Sq1: Poor refinement. Fast to compute.

I α = Sq3: Poor refinement. Slow to compute.

Sarkar–Scaduto–Stoffregen generalized this to odd Khovanov
homology, but did not give any calculations.

I Sq1
odd: Good refinement. Fast to compute.



Frobenius systems and Link homology

Definition
A Frobenius system is a tuple (R,A, ι, ε,∆), where ι : R → A is an
inclusion of commutative rings, ∆: A→ A⊗R A a co-associative,
co-commutative A-bimodule map, ε : A→ R a R-module map, and
(ε⊗ id)∆ = id.

Khovanov showed that rank 2 Frobenius systems give rise to link
homology theories. Popular examples include

I (even Khovanov homology) A = K[X ]/(X 2),

∆(1) = X ⊗ 1 + 1⊗ X , ∆(X ) = X ⊗ X .

I (graded Lee homology) R = K[t], A = K[X , t]/(X 2 − t),

∆(1) = X ⊗ 1 + 1⊗ X , ∆(X ) = X ⊗ X + t ⊗ 1.

I (Bar-Natan homology) R = K[h], A = K[X , h]/(X 2 − Xh),

∆(1) = X ⊗ 1 + 1⊗ X − h ⊗ 1, ∆(X ) = X ⊗ X .



Frobenius systems and Link homology

Given a link diagram D and a Frobenius system, the link complex
is built from the hypercube of smoothings of D.

A⊗ A

A

A⊗ A⊗ A

A⊗ A∆⊗
id

m

− id
⊗m

∆



Odd Khovanov homology

Even Khovanov homology can also be defined using a symmetric
algebra SK[S] over every smoothing S, generated by the circles C
in S subject to C 2 = 0. The role of ∆ is then played by
multiplication with C + D.

Ozsvath–Rasmussen–Szabo defined odd Khovanov homology by
replacing the symmetric algebra with an exterior algebra, and the
role of ∆ is played by multiplication with C − D.

Typical properties are

I Over F2 it agrees with even Khovanov homology.

I Has structure of K[X ]/(X 2)-module using a basepoint on L.

I Kh∗,qo (L;K) ∼= K̃h
∗,q−1
o (L;K)⊕ K̃h

∗,q+1

o (L;K) for any K.

I There does not seem to be an analogue for an odd Lee or
Bar-Natan complex.



LEO-triples

Let R = Z[X , h]/(X 2 − Xh).

Definition
A local even-odd (LEO) triple (C ,D, f ) consists of a finitely
generated, free, bigraded cochain complex C over Z[X ]/(X 2), a
finitely generated, free, bigraded cochain complex D over R, and a
bigraded chain homotopy equivalence
f : C ⊗Z Z/(2)→ D ⊗R R/(2, h) such that

I the map f is a homomorphism of cochain complexes over
F2[X ]/(X 2).

I the localization h−1D = D ⊗R h−1R is homotopy equivalent
to a free graded module of rank 1 over h−1R supported in
homological degree 0 and odd quantum gradings.

There is a reduced version with C over Z and D over Z[h] and
localization h−1Z[h] = Z[h, h−1].



Local equivalence

Definition
Given LEO-triples (C ,D, f ) and (C ′,D ′, f ′), a local map from
(C ,D, f ) to (C ′,D ′, f ′) consists of bigrading-preserving chain maps
α : C → C ′ and β : D → D ′ so that

I the induced map β : h−1D → h−1D ′ is a homotopy
equivalence.

I the following diagram commutes up to homotopy:

C

C ′

C ⊗ Z/(2) D ⊗R/(2, h) D

C ′ ⊗ Z/(2) D ′ ⊗R/(2, h) D ′
α α β β

f

f ′

We say (C ,D, f ) and (C ′,D ′, f ′) are locally equivalent, if local
maps exist in both directions.



LEO-triples of knots

For K a knot we have the LEO-triples

LEO(K ) = (CKho(K ),CKhBN(K ), id),

and
LEE(K ) = (CKh(K ),CKhBN(K ), id).

In the special case of the unknot U we have

LEO(U) = LEE(U) = (Z[X ]/(X 2){1},R{1}, id).

Proposition

If the knots K ,K ′ are concordant, then LEO(K ) and LEO(K ′) are
locally equivalent. The same holds for LEE. In particular, if K is
slice then LEO(K ) and LEE(K ) are locally equivalent to LEO(U).



The group of local equivalence classes

Denote the set of local equivalence classes of LEO-triples by CLEO.
The reduced analogue is denoted by C̃LEO.

Theorem (Dunfield–Lipshitz–S)

Both CLEO and C̃LEO have the structure of an abelian group and
there is an epimorphism π : CLEO → C̃LEO. Furthermore, the
assignment K 7→ LEO(K ) defines a homomorphism C → CLEO.

Similar constructions have been done in involutive Heegaard Floer
homology (Hendricks–Manolescu–Zemke,
Dai–Hom–Stoffregen–Truong). Also, Lewark recently constructed
a group which can be shown to be a direct summand of C̃LEO.

Given a LEO-triple (C ,D, f ), one can form the LEO-triple
(D ⊗R Z [X ]/(X 2),D, id), and such triples generate a subgroup
CLEE which is a direct summand of CLEE. The reduced analogue is
Lewark’s group.



The s-invariant

Let (C ,D, f ) be a LEO-triple. For j an odd number we have the
change of coefficients map i : H0,j(D)→ H0,j(h−1D) ∼= Z⊕ Z.

If F is a field, we can change coefficients and define

s+F (C ,D, f ) = max{j ∈ 2Z + 1 | iF is non-zero} − 1,

and

s−F (C ,D, f ) = max{j ∈ 2Z + 1 | iF is surjective}+ 1.

If (C ,D, f ) is a reduced LEO-triple, H0,j(h−1D) ∼= Z and we define

sF(C ,D, f ) = max{j ∈ 2Z | iF is surjective}.

Then sF : C̃LEO → 2Z is a homomorphism, but s+F and s−F are not.
However, s+F (LEO(K )) = s−F (LEO(K )) = sF(LEO(K )).



The s-invariant

The s-invariant only depends on the characteristic, and if (C ,D, f )
is a reduced LEO-triple, then sQ(C ,D, f ) = sFp(C ,D, f ) except for
finitely many primes.

Proposition

The tuple

(sQ(C ,D, f ), sQ(C ,D, f )−sF2(C ,D, f ), sQ(C ,D, f )−sF3(C ,D, f ), · · · )

induces a surjective homomorphism

C̃LEO →
⊕
n∈N

Z.

This follows by considering ‘staircase complexes’, compare
Iltgen–Lewark–Marino.



Invariants of LEO-triples – Bockstein refinements

Given a reduced LEO-triple (C ,D, f ) and n a positive integer, we
get a Bockstein homomorphism

βn : Hk,q(C ;Z/(2n))→ Hk+1,q(C ;Z/(2)).

Definition
We say the integer q is βn-reduced full, if there exists
ǎ ∈ H−1,q(C ;Z/(2n)) and a ∈ H0,q(D;F2) with f ◦ βn(ǎ) = p(a)
and 0 6= i(a) ∈ H0,q(h−1D;F2).

H−1,q(C ;Z/(2n)) H0,q(Dh=0;F2)

H0,q(D;F2) H0,q(h−1D;F2)

f ◦ βn
p

i



Invariants of LEO-triples – Bockstein refinements

Observe that if q is βn-reduced full, then

I q ≤ sF2(C ,D, f ).

I q − 2 is also βn-reduced full: use ha ∈ H0,q−2(D;F2) and
0 ∈ H−1,q−2(C ;Z/(2n)).

Definition
Given a reduced LEO-triple (C ,D, f ), define

s̃βn(C ,D, f ) = max{q ∈ 2Z | q is βn-reduced-full}+ 2.

The definition is so that

s̃βn(Z,Z[h], id) = 0.

Also, for n < m we have

sF2(C ,D, f ) ≤ s̃βn(C ,D, f ) ≤ s̃βm(C ,D, f ) ≤ sF2(C ,D, f ) + 2



Invariants of LEO-triples – Bockstein refinements

The case n = 1 leads to the first Steenrod square. In particular,

rSq
1
o (K ) ≤ s̃β1(LEO(K )) ≤ sSq

1
o (K ),

and
rSq

1

(K ) ≤ s̃β1(LEE(K )) ≤ sSq
1

(K ).

Also, note we have two operators

Sq1, Sq1
o : K̃h

−1,q
(K ;F2)→ K̃h

0,q
(K ;F2).

We get another invariant s̃β(C ,D, f ) corresponding to their sum
by looking at

β = β1 + f −1 ◦ β1 ◦ f : H−1,q(C ;F2)→ H0,q(C ;F2).



Invariants of LEO-triples – Comprehensive refinements

Consider

H0,q(C ) H0,q(Dh=0;F2)

H0,q(D) H0,q(h−1D)

f ◦ j
p

i

Definition
Let (C ,D, f ) be a reduced LEO-triple. An integer q is called oddly
reduced full, if there exist ǎ ∈ H0,q(C ) and a ∈ H0,q(D;F2) such
that f ◦ j(ǎ) = p(a) and 0 6= i(a) ∈ H0,q(h−1D;F2).
Also, q is called completely reduced full, if there exist ǎ ∈ H0,q(C )
and a ∈ H0,q(D) such that f ◦ j(ǎ) = p(a) and i(a) generates
H0,q(h−1D) ∼= Z.



Invariants of LEO-triples – Comprehensive refinements

Definition
For a reduced LEO-triple (C ,D, f ) define

s̃o(C ,D, f ) = max{q ∈ 2Z | q is oddly reduced full},
s̃c(C ,D, f ) = max{q ∈ 2Z | q is completely reduced full}.

Then

sF2(C ,D, f )− 2 ≤ s̃o(C ,D, f ) ≤ sF2(C ,D, f ),

sZ(C ,D, f )− 2 ≤ s̃c(C ,D, f ) ≤ sZ(C ,D, f ).

where
sZ(C ,D, f ) = max{q ∈ 2Z | i is surjective}.

Note sZ(C ,D, f ) ≤ sF(C ,D, f ) for any field F.



Example – 942

For the mirror of 942 the odd Khovanov homology is given by

q

h −4 −3 −2 −1 0 1 2

6 Z
4 Z
2 Z
0 Z Z2

−2 Z
−4 Z
−6 Z

It is known that sF(942) = 0 for any F, and we get

s̃β1(942) = 2.



Example – 942

For the mirror of 942 the odd Khovanov homology is given by

q

h −4 −3 −2 −1 0 1 2

6 F2

4 F2

2 F2

0 (F2)
2 F2

−2 F2

−4 F2

−6 F2

It is known that sF(942) = 0 for any F, and we get

s̃β1(942) = 2.



Example – 12n475

For 12n475 odd Khovanov homology is given by

q

h
0 1 2 3 4 5 6 7

12 Z
10 Z
8 Z
6 Z2

4 Z
2 Z⊕ Z3

0 Z8

−2 Z3

Again, sF(12n475) = 0 for any F. Here

s̃o(12n475) = −2, s̃βn(12n475) = 0, s̃β3(12n475) = 2



Example – 12n475

For 12n475 odd Khovanov homology is given by

q

h
0 1 2 3 4 5 6 7

12 F2

10 F2

8 F2

6 (F2)
2

4 F2

2 F2

0 F2 F2

−2

Again, sF(12n475) = 0 for any F. Here

s̃o(12n475) = −2, s̃βn(12n475) = 0, s̃β3(12n475) = 2



Properties of the refinements

Proposition

All Bockstein and comprehensive refinements only depend on the
local equivalence class. In particular, they all vanish on slice knots.

Theorem A (Dunfield–Lipshitz–S)

A reduced triple (C ,D, f ) represents 0 in C̃LEO if and only if

s̃c(C ,D, f ) = 0 = s̃c(C ∗,D∗, f ∗).

Basic idea: If a, ǎ witness s̃c(C ,D, f ) = 0, one can define a local
map (Z,Z[h], id) to (C ,D, f ). To get the local map in the other
direction, use the dual and 0 = s̃c(C ∗,D∗, f ∗).



Properties of the refinements

A similar result holds for s̃o with a group C̃ o
LEO that involves triples

(C ,D, f ) where D is defined over F2[h].
This can be used to show:

Proposition

Let (C ,D, f ) be a reduced LEO-triple with dual (C ∗,D∗, f ∗). If
s̃βn(C ,D, f ) 6= sF2(C ,D, f ), then s̃βn(C ∗,D∗, f ∗) = sF2(C ∗,D∗, f ∗)

The point is that s̃βn(C ,D, f ) 6= sF2(C ,D, f ) implies
s̃o(C ,D, f ) = sF2(C ,D, f ). If the dual also differs from the

s-invariant, we get (C ,D, f ) trivial in C̃ o
LEO (up to grading shift).

A similar behaviour works for s̃o , but the proof is more difficult.

Proposition

Let (C ,D, f ) be a reduced LEO-triple with dual (C ∗,D∗, f ∗). If
s̃o(C ,D, f ) 6= sF2(C ,D, f ), then s̃o(C ∗,D∗, f ∗) = sF2(C ∗,D∗, f ∗)



Properties of the refinements

We can define a relation on C̃ o
LEO by [(C ,D, f )] ≥ [(C ′,D ′, f ′)], if

there is a local map from (C ′,D ′, f ′) to (C ,D, f ). Because of the
previous Proposition, this gives a total order

Theorem B
There is a translation invariant total order on C̃ o

LEO, characterised
by [(C ,D, f )] ≥ 0 if and only if s̃o(C ,D, f ) ≥ 0.

We do not know if this is true for C̃LEO, but the previous
Proposition does not hold for s̃c . Finally, a possibly disappointing
result:

Proposition

Let K be an alternating knot. Then LEO(K ) and LEE(K ) are
locally equivalent to (Z{s},Z[h]{s}, id), where s is the signature of
K .



Computations

The following table shows the number of prime knots for which the
refinement differs from the s-invariant.

crossings s̃Sq
1
(K ) s̃Sq

1
o (K ) s̃β(K ) s̃β15(K ) s̃c(K )

9 0 1 1 1 1
10 0 2 2 2 2
11 0 10 10 10 10
12 0 49 49 50 50
13 0 286 285 297 297
14 2 1,718 1,717 1,797 1,797
15 41 11,244 11,239 11,808 11,819
16 162 73,814 73,787 77,873 77,929



Computations

In April 2023 Dunfield–Gong were left with 17,991 knots among
prime knots with up to 19 crossing for which the slice status was
unknown. Of those knots 826 have non-zero s̃β15 , and 64 have
non-zero s̃β (no overlap between these knots). Also, s̃c detects
exactly these 890 knots.

Manolescu–Piccirillo (’21) listed five topologically slice knots such
that if any of them is smoothly slice, then an exotic S4 exists.
Nakamura (’22) showed that all of these knots are not slice.

For all five of these knots we also show that s̃β is non-zero.


