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PLAN FOR THE TALK
1. Construction of the mixed invariant.

A. Basics of non-orientable surfaces.
B. Equivariant Khovanov homology.
C. Functoriality under non-orientable cobordisms.
D. Admissible cuts and the mixed invariant.

2. Applications of Khovanov homology and the mixed invariant.
E. More properties of the mixed invariant.
F. Surprising surfaces on the trefoil and Sundberg-Swann’s pair.
G. Exotic pairs from Hayden-Sundberg’s examples.
H. Some open questions
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NON-ORIENTABLE SURFACE BASICS
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EQUIVARIANT KHOVANOV HOMOLOGY
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FUNCTORIALITY OF KHOVANOV HOMOLOGY
The Jacobsson Khorana Bar Natan Morrison Hedrich WalkerBallingerL Sarkar Given a
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ADMISSIBLE CUTS
Det For a cobordism Filo 34 w crosscapnumber 22 an admissible cut is a

decomposition F F OFo FoF non orientable
Two admissible cutsL L are equivalent ftpEfIIif diffeomorphic or disjoint
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THE MIXED INVARIANT
Decompose F F gto be an admissible cut
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PROPERTIES AND 
APPLICATIONS
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PROPERTIES OF THE INVARIANTS

1. The map  shifts  by . The 
mixed invariant  shifts  by .

2. If  is closed, non-orientable then . If connected with 
crosscap number  then .

3. For  non-orientable:
1. If  is a standard stabilization then .
2. If  is any stabilization then .
3. If  with  closed, non-orientable then . If 

 has crosscap number  then .
4. Both  and  are unchanged by connected sums with s.

ℋ−(F) (grh, grq) (−e/2, χ − 3e/2 − 2s)
Φ(F) (grh, grq) (−1 − e/2, χ − 3e/2 − 2s)
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F ℋ−(F) = Φ(F) = 0
F ℋ−(F) = 0
F = F′ #F′ ′ F′ ′ ℋ−(F) = 0

F′ ≥ 2 Φ(F) = 0
ℋ− Φ S2
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SURPRISING SURFACES FROM SUNDBERG-SWANN
Thy Sundberg Swann Khovanov homology distinguishes
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EXOTIC PAIRS
Det F F'c oBxs3 are an exotic
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SOME OPEN QUESTIONS

1. Are there any exotic pairs detected by  but not ?
2. Does  distinguish some closed, disconnected surfaces?
3. Does  distinguish the stabilizations of some Möbius 

bands?
4. Can you turn any exotic pair of slice disks [distinguished 

by ] into an exotic pair of non-orientable cobordisms 
[distinguished by  or ]?

5. Is there a precise relationship between  and the 
Seiberg-Witten invariant of the branched double cover?
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Thanks for listening!


