2-Verma modules and link homologies

Pedro Vaz (Université catholique de Louvain)

J.W.W. \mathcal{P} {Abel Lacabanne, Grégoire Naisse}

RDL(Les Diablerets, Feb. '22) : A conference in $\{0 \subset \Bbbk^2 \subset \Bbbk^3\}$

Topology $\cap RT \cap Verma \ modules$

Beyond their interest to RT, Verma modules were recently found to have applications to topology :

• braid grp reps: Burau, Lawrence–Krammer–Bigelow (Jackson–Kerler '11), categorification : Dupont–Naisse '21,

HOMFLYPT invariants (Naisse–V. '17),

categorification : Naisse–V. '17,

• Jones invariants for links in a solid torus (lohara-Lehrer-Zhang '18), categorification : Lacabanne–Naisse–V. '20.

Suppose you have a link in a solid torus

This gives rise to three different kinds of link diagrams :

Extending invariants like Jones's \mathfrak{sl}_2 -link polynomial from S^3 to the solid torus results in the Jones poly. of type B (Geck–Lambropoulou '97).

ILZ's blob algebra and the flagpole Jones invariant

The main idea of WRT is to construct quantum link polynomials via a 0+1 TQFT. Consider (quantum) \mathfrak{sl}_2 and its 2-dim irrep $V = \mathbb{C}_q^2 := \mathbb{C}^2(q)$. Since \mathfrak{sl}_2 is a Hopf algebra its category of f.d. reps is monoidal. It is even braided...

🗘 Operator-invariant of tangles !

 \mathcal{Q} : What about for links in the solid torus?

WRT for links in a solid torus : mind the flagpole !

One possible solution : Vermas (∞ -dimensional reps).

This is the universal Verma module for \mathfrak{sl}_2 , irred. over the field $\Bbbk(\lambda, q)$.

Vermas and SW duality : the blob algebra

The blob algebra (Martin-Saleur '94)

Iohara–Lehrer–Zhang '18 : $\operatorname{End}_{\mathfrak{sl}_2}(M(\lambda) \otimes (\mathbb{C}^2_{q,\lambda})^{\otimes r}) = \mathcal{B}_r(\lambda,q).$

- Generators : $\langle \ | \ \cdots |$, $| \ | \ \cdots \ \rangle \langle \ \cdots |$ and $| \ | \ \cdots |$
- Relations : planar isotopies, $\bigcirc = -(q+q^{-1})$,

$$= (\lambda q^2 + \lambda^{-1}) - q^2$$

Does it generalize ?...yes

• $\mathfrak{p} \subseteq \mathfrak{gl}_m$ (standard) parabolic with Levi $\mathfrak{l} = \mathfrak{gl}_{m_1} \times \cdots \times \mathfrak{gl}_{m_d}$, • $M^{\mathfrak{p}}(\Lambda)$ a (universal) parabolic Verma module.

Lacabanne-V. '20

 $\mathcal{H}_{\underline{m}}(d,n)\simeq \operatorname{End}_{\mathfrak{gl}_m}(M^\mathfrak{p}(\Lambda)\otimes V^{\otimes d}) \text{ is the 2-row quotient of an Ariki–Koike algebra.}$

Particular cases (d is the number of blocks in p) :

•
$$\mathfrak{p} = \mathfrak{gl}_{m \geq n} : \mathcal{H}_{\underline{m}}(d, n) \simeq \mathsf{Hecke}$$
 algebra of type A ($m = 2 : \mathsf{TL}$).

• $\mathfrak{p} : m \ge nd$ and $m_i \ge n$ for all $i : \mathcal{H}_{\underline{m}}(d, n) \simeq Ariki-Koike$.

• $\mathfrak{p}: d = 2$ and $m_1, m_2 \ge n : \mathcal{H}_{\underline{m}}(d, n) \simeq$ Hecke algebra of type B with unequal and algebraically independent parameters.

• $\mathfrak{p} = \mathfrak{b} : \mathcal{H}_{\underline{m}}(d, n) \simeq \mathcal{B}_{gen}(d, n) \cong$ generalized blob \leftarrow new presentation !

Categorification is coming VERMAS AND LINK HOMOLOGIES 6 / 23

We had promised categorification!

we'd like to see ...

... a categorification of the Jones polynomial for links in the solid torus in the flagpole picture via a categorical action of the blob algebra.

• The first step would be to replace the vector spaces $M(\lambda)\otimes (\mathbb{C}^2_{q,\lambda})^{\otimes r}$ by categories, on which

- the commuting 2-actions of \mathfrak{sl}_2 and of the blob algebra are realized via (endo-)functors.

Tensoring without Vermas : KLRW algebras

Khovanov-Lauda-Rouquier-Webster '08-'10

Categorifications of tensor products of f.d. irreps are given through (cyclotomic) KLRW algebras, which are certain diagrammatic algebras.

These are **algebraic categorifications** : (certain) categories of modules over certain algebras on which \mathfrak{g} acts via (certain) endofunctors.

 ${\mathfrak O}$ We are interested in (quantum) ${\mathfrak g}={\mathfrak s}{\mathfrak l}_2$. The approach consists of :

replacing weight spaces by categories,

and

• defining functors E, F, ${\rm K}^{\pm 1}$ that move between weight spaces and "satisfy" the $\mathfrak{sl}_2\text{-relations}$:

$$[\mathbf{E},\mathbf{F}] = \frac{\mathbf{K} - \mathbf{K}^{-1}}{q - q^{-1}}.$$

Khovanov-Lauda, Rouquier & Webster's catq's

Fix a field k.

 \mathfrak{C} The following exists equally for \mathfrak{g} of symmetrizable type and with the red strands labeled by dominant integral g-weights.

Definition

The KLRW algebra T^r is the graded, associative, unital k-algebra generated by isotopy classes of braid-like diagrams

- Strands can either be black or red (there are r reds)
 - red strands cannot intersect each other.
 - black strands can cross red strands and each other and they can carry dots
- Multiplication is concatenation.

(Stendhal diagrams)

Generators are required to satisfy local relations. For example :

 \mathfrak{O} The cyclotomic condition makes T^r f.d. Without it we have an affine algebra : call it T^r_{aff} .

Categorical \mathfrak{sl}_2 -action

Adding a black strand at the right of a diagram from T^r gives rise to functors of *induction* (called F) and *restriction* (called E) on a category $T\text{-}mod_g$ of modules over $T = \bigoplus_{r \ge 0} T^r$. The functor K is defined as a grading shift.

These functors have very nice properties...

Theorem (Webster '10) :

▶ They are *biadjoint* (a.k.a. Frobenius)

▷ the composites EF and FE satisfy \oplus decompositions lifting the [,] (on f.d. reps K acts as a polynomial dividing $q - q^{-1}$). On T^r -mod_g :

$$\mathbf{EF} \simeq \mathbf{FE} \oplus_{p(r)} \mathrm{Id} \quad \left(\mathsf{or} \quad \mathbf{FE} \simeq \mathbf{EF} \oplus_{p(r)} \mathrm{Id} \right)$$

 \triangleright Moreover, $K_0(T^r) \cong V^{\otimes r}$ (as \mathfrak{sl}_2)-modules)

 $\mathfrak{L} \exists M > 0$ such that \mathbf{F}^M and \mathbf{E}^M act as zero on $T-mod_g$ P. VAZ VERMAS AND LINK HOMOLOGIES

Categorification of $\otimes s$ with a Verma

 \mathbf{Q} The idea is to see T^r as a dg-algebra with zero differential and "integrate" the cyclotomic condition

$$\cdots = 0$$

into a dg-algebra $(\mathcal{T}^r, \partial)$, together with a isomorphism $H(\mathcal{T}^r, \partial) \simeq T^r$.

A similar idea was carried out in the 70' : minimal models in \mathbb{Q} -homotopy theory (Sullivan,...)

This is how it goes :

- To construct such an algebra we note that T_{aff}^r acts on T^r .
- Writing a free resolution of T^r as a module over $T^r_{\rm aff}$ one gets a DGA (\mathcal{T}^r,∂) whose homology is $T^r.$

Testing the idea...

We intend to categorify the rational fraction $\frac{\lambda q^{-k} - \lambda^{-1}q^k}{q-q^{-1}}$ (which we see as a power series).

• We know that a categorification of multiplication by [n] is $\mathbb{Q}[X]/X^n$ (secretly this is $H(G_1(n))$ via grading shifts of some id. functor $\oplus_{[n]}$ Id

• But $\mathbb{Q}[X]/X^n$ is a module over $\mathbb{Q}[X]$ (secretly this is $H(G_1(\infty))$) for which

$$\mathbb{Q}[X]/X^n \longleftarrow \mathbb{Q}[X] \xleftarrow{X^n} \mathbb{Q}[X]$$

gives as a free resolution (grading shifts involved !).

• We can write this as a DGA $(\mathbb{Q}[X,\omega]/\omega^2,\partial)$ with $\partial X = 0$, $\partial \omega = X^n$, which has homology $\mathbb{Q}[X]/X^n$.

• Tensoring M with $\mathbb{Q}[X,\omega]/\omega^2$ gives ... $\frac{\lambda q^{-k} - \lambda^{-1}q^k}{q-q^{-1}}[M]$ (\bigcirc hooray!).

One can give a diagrammatic presentation of $(\mathcal{T}^r, \partial)$

(Stendhal with a blue)

☆ New generator ! homological deg 1

dg-enhancement of cyclotomic KLRW algebras

The differential "turns" \mathcal{T}^r into the f.d. algebra T^r . $\ref{eq:transformula}$ When no differential is present : new λ -grading.

VNow just **forget** there is a differential.

To define an \mathfrak{sl}_2 -categorical action we use the map that adds a vertical black strand at the right of a diagram from \mathcal{T}^r : this defines functors F and E as before.

- They are not biadjoint, and
- $\exists M : \mathbf{E}^M(\mathcal{T}\text{-}mod) = 0$, but **no such** M exists for **F**.

Categorification of tensor products with a Verma

Theorem (Lacabanne–Naisse–V. '20)

These functors fit in a SES

 $0 \to \mathbf{EF} \longrightarrow \mathbf{FE} \longrightarrow \oplus_p \mathrm{Id} \to 0,$

Bringing ∂ back into the picture we can define analogous of the functors \mathbf{F} and \mathbf{E} on $\mathcal{D}_{dg}(\mathcal{T}, \partial)$

This results in a SES of complexes whose resulting LES in homology recovers Webster's result for \otimes of f.d. reps.

Theorem (Lacabanne–Naisse–V. '20)

There are isomophisms of \mathfrak{sl}_2 -modules

$$\mathbf{K}_0^{\Delta}(\mathcal{T}^r, 0) \cong M(\lambda) \otimes V^{\otimes r}, \\ \mathbf{K}_0^{\Delta}(\mathcal{T}^r, \partial) \cong V^{\otimes (r+1)}.$$

$A \ categorical \ blob \ action$

There are endo functors on $\mathcal{T}\text{-}mod$ categorifying the blob algebra action : needs A-infinity stuff

 \bigwedge On our order to prove the (categorical) blob relations one needs to go to the world of A_{∞} -bimodules.

As Webster, we define the cup B_i and the cap \overline{B}_i functor for $1 < i \le r - 2$. They are defined diagrammatically :

Proposition (Lacabanne–Naisse-V. '20)

There are quasi-isomorphisms of A_{∞} -bimodules

 $q(\mathcal{T}^r)[1] \oplus q^{-1}(\mathcal{T}^r)[-1] \xrightarrow{\simeq} \bar{B}_i \otimes_{\mathcal{T}}^{\mathrm{L}} B_i. \quad \bigcirc = -q - q^{-1}$

We can define a double braiding functor Ξ in the same spirit : a certain diagram modulo relations.

Proposition (Lacabanne–Naisse-V. '20)

- O The functor Ξ : D_{dg}(T^r, 0) → D_{dg}(T^r, 0) is an autoequivalence, with inverse given by Ξ⁻¹ := RHOM_T(X, -).
- Provide the second s

 $\mathbf{E} \circ \Xi \cong \Xi \circ \mathbf{E},$ $\mathbf{E} \circ \mathsf{B}_i \cong \mathsf{B}_i \circ \mathbf{E},$

and

$$\mathbf{E} \circ \overline{\mathsf{B}}_i \cong \overline{\mathsf{B}}_i \circ \mathbf{E}.$$

(similarly for \mathbf{F} in the place of \mathbf{E}).

Theorem (Lacabanne–Naisse–V. '20)

• There is a quasi-isomorphism of functors :

$$\operatorname{Cone}\left(\lambda q^{2}\Xi[1] \to q^{2}\operatorname{Id}[1]\right)[1] \xrightarrow{\simeq} \operatorname{Cone}\left(\Xi \circ \Xi \to \lambda^{-1}\Xi\right)$$

$$\square \text{ This corresponds to } \lambda q^{2} \swarrow - q^{2} \blacksquare = \underbrace{\swarrow}_{-\lambda^{-1}} - \lambda^{-1} \checkmark$$

2 There is a quasi-isomorphism of A_{∞} -bimodules :

$$\lambda q(\mathcal{T}^r)[1] \oplus \lambda^{-1} q^{-1}(\mathcal{T}^r)[-1] \xrightarrow{\simeq} \bar{B}_1 \otimes_{\mathcal{T}}^{\mathbf{L}} X \otimes_{\mathcal{T}}^{\mathbf{L}} B_1.$$

 \square This corresponds to $-(\lambda q + \lambda^{-1}q^{-1})$ =

Link homology : so far so good ... so what?

• As Webster, we can define functors for the (type A) braid generators.

• A link diagram with a flagpole then gives a functor from $\mathcal{D}_{dg}(\mathcal{T}^0, 0)$ to itself, categorifying the Jones invariant.

At the time being we cannot tell much about its properties...

• At the time being we have a link homology for links in the solid torus coming from commuting categorical actions of \mathfrak{sl}_2 and the blob algebra on $\mathcal{D}_{dg}(\mathcal{T}^r, 0)$:

Some hurdles to cross

• If you want to formalize this diagram, or if you aim at categorifying the blob algebra as an algebra of operators on $\mathcal{D}_{dg}(\mathcal{T}^r, 0)$, you might prefer instead to (the bottom arrow is a homomorphism)

and ask what is ${\rm END}_{\mathfrak{sl}_2}(\mathcal{V}) \subset {\rm Fun}(\mathcal{V})$ and so on...

• Diagrams like the above work perfectly if the \mathcal{F}_a 's are exact functors acting on an additive or abelian category. We can then ask natural questions like irreducibility, \otimes s, etc...

In our case, \mathcal{F}_a 's are triangulated functors. Categories of triangulated functors are in general not triangulated : $\rightsquigarrow \operatorname{Fun}(\mathcal{V})$ is not a good choice here.

P. VAZ

Still some hurdles to cross

One possible solution is to work on a DG-enrichment of our triangulated category $\mathcal{D}_{dg}(\mathcal{T}^r, 0)$, which is triangulated.

• Our functors lift to DG-functors and we can ask for the smallest triangulated 2-category containing them.

• Notions like irreducibility become tricky (sometimes modding out by an (invariant ideal) of morphisms ruins the triangulated structure...).

\Lambda DG-lifts of triangulated functors not always exist.

A further step would be to construct a 2-category $\mathcal{C}_{\textcircled{O}}(\mathfrak{g})$ such that

Some questions are best not left unanswered : a blob 2-category

One can give a definition of a blob 2-category as a certain $(\infty,2)\text{-category}$:

• The objects r are the dg-categories $\mathcal{D}_{dg}(\mathcal{T}^r,0)$

• The $\operatorname{Hom}(\mathbf{r},\mathbf{r}')$ are (Lurie's dg nerves of) dg-categories of certain subcategory of dg-functors $\mathcal{D}_{dg}(\mathcal{T}^r,0) \to \mathcal{D}_{dg}(\mathcal{T}^r,0)$ generated by all compositions of Ξ , B_i and \overline{B}_i , and the identity functor whenever r = r'.

Theorem (Lacabanne-Naisse-V. '20)

There is an isomorphism of categories

$$\mathbf{K}_0^{\Delta}(\mathfrak{B})\cong\mathcal{B}.$$

 $\mathsf{rk}:\mathcal{B}=\oplus_{r,r'\geq 0}\mathcal{B}(r,r')\text{, }\mathcal{B}(r,r)\text{ being the blob algebra }\mathcal{B}_r(\lambda,q)$

Thank you for the attention!

Links in H_1

 $\mathcal{C}^{ riangle}(\mathcal{D}_{dg}(\mathcal{T}^r))$