
gl0 IS THE MIDDLE MAN
LECTURE NOTES FOR “CATEGORIFICATION IN LOW DIMENSIONAL TOPOLOGY”

LOUIS-HADRIEN ROBERT

ABSTRACT. These notes are meant to cover the two first lectures of the mini-course
with the same title given in Bochum in July 2025 for the summer school Categori-
fication in Low Dimensional Topology. The aim of the minicourse is to give detail
on a spectral sequence from the reduced triply graded homology to Knot Floer ho-
mology constructed in [BPRW25]. In these two first lectures, we aim to introduce
gl0-homology which is yet another knot homology theory which plays a key role for
the construction of the spectral sequence.
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These notes are probably in a very imperfect shape. If you spot a mistake, have a
question or a comment, please send an email to louis-hadrien.robert@uca.fr. I will
make my best to correct mistake and keep this document up to date at the following
URL: https://lrobert.perso.math.cnrs.fr/Talk/bochum.pdf

1. INTRODUCTION

The HOMFLY-PT polynomial is a link invariant satisfying the skein relation:

a −a−1 = (q− q−1)(1)

They are two variants for this invariant, the normalized one for which the value of
the unknot is 1 and the un-normalized one for which it is a−a−1

q−q−1 . In particular, the
HOMFLY-PT polynomial is in general not a polynomial.

1

mailto:louis-hadrien.robert@uca.fr
https://lrobert.perso.math.cnrs.fr/Talk/bochum.pdf


2 LHR

Polynomial Homology
Jones Khovanov
glN Khovanov–Rozansky

Alexander Knot Floer
HOMPLY-PT Triply graded
TABLE 1. Classical categorifications

When one specializes the HOMPLY-PT polynomial by setting a = q2 one obtains
the (normalized or un-normalized) Jones polynomial. More generally the specializa-
tion a = qN gives the glN polynomial. Setting a = 1 in the normalized HOMFLY-PT
polynomial gives the Alexander polynomial.

All these links invariants have been categorified (sometimes more than once) by
link homology theory. Table 1 sums up the most classical caltegorifications.

The specializations which relate the HOMPLY-PT polynomial to the glN invari-
ants have an incarnation at the homological level: they translate into spectral se-
quences (due to Rasmussen [Ras15]). The aim of the whole lecture is to explain that
the same happens for the Alexander polynomial: there is a spectral sequence from
the reduced triply graded homology to Knot Floer homology. The existence of all
these spectral sequences was conjectured in [DGR06].

This spectral sequence has not (yet ?) a nice definition as Rassmussen’s ones. In
fact it is a composition of two spectral sequences. As we shall see gl0-homology (a
new knot homology theory) play a central role in this composition. The aim of this
first two lectures is to give a definition of gl0 homology.

1.1. Quantum integers. For k in Z, define [k]= qk − q−k

q− q−1 =
k∑

i=1
q−k−1+2i ∈Z[

q, q−1]
,

if k ≥ 0, define [k]!=
k∏

i=1
[i] ∈ Z[

q, q−1]
, with the usual convention that an empty

product is equal to 1 ∈Z[
q, q−1]

. Finally, if n,a ∈Z, define

[
n
a

]
=


a∏

k=1

[n+1−k]
[k]

if a ≥ 0,

0 ortherwise.

Exercise 1. (1) Establish a Pascal-like relation for quantum binomials.
(2) Deduce that quantum binomials are indeed Laurent polynomials (symmetric

in q and q−1).
(3) What are their degrees?

2. ANNULAR COMBINATORICS

2.1. Vinyl graphs. In these lectures, knots and links are always presented as braid
closures. This is because many notions need this annular presentation of knots.
Generalizing what is discussed here to a more general setting seems difficult but
potentially very interesting.

Let us fix A = {z ∈ C2 s.t. 1 ≤ |z| ≤ 2} be the standard annulus. We will think of
braid diagrams as being drawn in A and braid closure as subsets of A ×[0,1]. There
is a canonical map πS1 : A → S1. An oriented curve γ : [0,1] → A is directed if the
map πS1 ◦γ is nowhere singular and the (oriented) tangent bundle of πS1 ◦γ agrees
with that of S1.



3

Definition 2.1. A vinyl graph Γ is a finite N-edge-labeled (by a thickness function,
usually denoted by t), oriented trivalent graph1 embedded in the interior of A such
that:

• Every (oriented) edge is directed.
• A flow condition is respected at every vertex: the sum of the in-going thick-

nesses equals the sum of the out-going thicknesses.

The sum of thicknesses of edges intersection a generic ray is constant and is called
the index of Γ. A vinyl graph is elementary if thickness function is {1,2} valued (and
there is no circle of thickness 2).

In a vinyl graph there are two kind of vertices: the split vertices (two out-going
edges) and the merge vertices (two in-going edges). At each vertex v there are two
thin half-edges denoted (l(v) and r(v) for left and right) and one thick half-edge de-

noted b(v) (for big). Define d(v)= t(l(v))t(r(v)) and w(v)=
[
t(b(v))
t(l(v))

]
.

Exercise 2. For any vinyl graph Γ, prove that:∑
v∈split(Γ)

d(v)= ∑
v∈merge(Γ)

d(v) and
∏

v∈split(Γ)
w(v)= ∏

v∈merge(Γ)
w(v).

The first one is a consequence of the second, but might be easier to start with.
Hint: For the first one, can parallelize edges according to their thickness and ob-

serve the collection of curves arising this way.

Example 2.2. The following vinyl graph has index 7.

1

6

4

2 3

4
1

5

2

2

1 1

5

1

2

Remark 2.3. It is convenient but not essential to allow vinyl graphs to have edges
of thickness 0. However such edges should be considered as non-existent. In other
words, we identify vinyl graph with 0-thick edges with the same vinyl graph with
these edges removed (and bi-valent remaining vertices smoothed out).

2.2. Some skein modules.

Definition 2.4. For any non-negative integer k denote Skeink the torsion free2

Z[q, q−1]-module generated by vinyl graphs of index k and modded out by ambient

1Parallel edges are allowed, as well as vertex-less loops.
2We mean here that the torsion part that might occur after applying the relation is modded out.
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isotopy and by the following local relations (and their mirror images):

a+b

ba =
[
a+b

a

]
a+b

,(2)

a+b+ c

a b c

=
a+b+ c

cba

,(3)

a

a

b

b

1

1

=
b

b

a

a

1

1

+ [b−a]

a

a

b

b

.(4)

Exercise 3. Prove that the following relations hold in Skeink:

2

2

2

+ 2

2

2

2

+2 =(5)

a

b

b+ l

a+ l

c

=∑
j

[
l

c− j

]
b+ l

a+ l

a

b
j

(6)

12 = 21(7)

For any braid closure diagram D of index D, define ι(D) to be the element of Skeink
computed using the following two local rules:

⇝ q−1
2 − q−2 ,(8)

⇝ q1
2 − q2 .(9)

Proposition 2.5. The element ι(D) depends only the braid closure D represents, i.e.
it is invariant by the braid relations and by conjugation in the braid group.

Proof. Invariance by conjugation and by far commutation is immediate. Let us deal
with the second Reidemeister move:

=
2

2

+ − (q+ q−1) 2 =(10)

Exercise 4. Prove R3, i.e. that ι(D)= ι(D′) using (5) □

Theorem 2.6 ([QR18, Lemma 5.2]). The module Skeink has a basis given by collec-
tions of circles (Sλ)λ⊢k.

The proof is given by an effective algorithm.
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Conjecture 2.7 ([QR18, Conjecture 5.4] partly proved in [Hik24]). Any vinyl graph
decomposes positively (and unimodally) in the basis (Sλ)λ⊢k.

If one is only interested in (uncolored) braid closure, one can also consider a
slightly small skein module.

Definition 2.8. For any non-negative integer k denote Skeinel
k the torsion free Z[q, q−1]-

module generated by elementary vinyl graphs of index k and modded out by ambient
isotopy and by the following local relations:

2

2

2

+ 2

2

2

2

+2 = ,(11)

2

11 = [2]
2

.(12)

Theorem 2.9 (Turaev 88). The module Skeinel
k has a basis given by collections of

positively curled unknots (Uλ)λ⊢k.

Corollary 2.10. The module Skeinel
k has a basis given by disjoint union of chains of

of dumbells (Dλ)λ⊢k.

Corollary 2.11. The module Skeinel
k is a submodule of Skeink.

Let us a fix ⋆= 19
10 ∈A .

Definition 2.12. A pointed vinyl graph is a vinyl graph Γ a for which ⋆ is in the
interior of an outermost edge of Γ of thickness 1.

Definition 2.13. For any non-negative integer k, denote Skeinel
k ⋆

the torsion free
Z[q, q−1]-module generated by vinyl graphs of index k and modded out by ambient
isotopy (preserving the base point) and by the local relations (11) and (12) (away
from the base point):

Proposition 2.14. The skein module Skeinel
k ⋆

has a basis given by disjoint unions
of chains of dumbells.

. . .

. . .

. . .

..
.

. . .

...

. . .

. . .

. . .

..
.

. . .

...

FIGURE 1. On the left, a positively curled unknot in the solid torus.
On the right a chain of dumbells.

One defines morphisms Z[q, q−1]-morphisms from Skein :=⊕
k∈NSkeink to Z[q, q−1]

by defining the values for each collection of circles. Note that these values might not
behave multiplicatively with respet to disjoint union (but they might). Since braid
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closures are naturally seen as elements of Skein, one may wonder when the images
of braid closures by these morphisms provide link invariants.

Let N be a positive integers and consider ψN : Skein →Z[q, q−1] which is defined
multiplicatively on collection of circles and which associates with a circle of thickness

k the Laurent polynomial
[

N +k−1
k

]
.

Proposition 2.15. The morphism ψN provides an invariant of framed links. It can
be renormalized by multipliying the results by q(1−N)w(β) where w(β) is the writhe of
the braid β, that is the number of positive crossings minus the number of negative
ones. The renormalized invariant satisfies the skein relation

qN − q−N = (q− q−1)(13)

and is equal to [N] on the unknot. It is therefore the glN polynomial invariant (i.e.
Jones polynomial for N = 2 and the trivial invariant equal to 1, for N = 1)3.

Sketch of the proof. Since we already know that braid closures are naturally seen as
elements in Skein, the only thing to inspect is the behavior under stabilization. The
place where we stabilize, behave then like a base point. Proposition 2.14 is then
very useful to work, but can be improved to get collection of circles with one of them
having a digon on which the base point stands. Working out the images under ψN is
then very easy.

Exercise 5. (1) Fill in the gaps of this proof.
(2) What happens for negative N?

The statement about the skein relation is trivial. □

Proposition 2.16. For any vinyl graph Γ,

ψ1(Γ)= ∏
v∈merge(Γ)

w(v)=: w(Γ).(14)

Exercise 6. Prove Proposition 2.16.

Let ψ0 : Skeinel → Z[q, q−1] be the Z[q, q−1]-linear map defined on collection of
collection of chain of dumbells to be 1 if the chain is connected, and 0 otherwise.

Proposition 2.17. The morphism ψ0 provides an invariant of framed links. It can
be renormalized by multipliying the results by qw(β). The renormalized invariant
satisfies the skein relation

− = (q− q−1)(15)

and is equal to 1 on the unknot. It is therefore the Alexander polynomial.

Exercise 7. Prove Proposition 2.17. This is similar, but substantially easier, than
for Proposition 2.15.

3. STATE SPACES AND MORPHISMS

The aim of this section is to categorify ψ1 and ψ0.

3Depending on your preferred convention for this skein relation you might need to change q for q−1 and
links for their mirror images.
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3.1. Symmetric polynomials. Let X = (x1, . . . , xa) be a finite alphabet of a letters.
The symmetric group Sa acts on Q[X] by permuting the letters. A symmetric poly-
nomial is an element of Q[X] which is invariant under this action. The ring Q[X] is
graded by setting deg(x)• = 2 and so is Q[X]Sa .

Let λ= (λ1 ≥ λ2 ≥ . . .λa ≥ 0) be a partition. It is convenient to depict partitions by
so called Young (or Ferrer) diagrams. The correspondence is as follow:

(5,3,3,1) ↭(16)

The Schur polynomial sλ(X) is defined as the quotient:

(17) sλ :=
det

((
xλ j+a− j−1

i

)
1≤i, j≤a

)
det

((
xa− j−1

i

)
1≤i, j≤a

)
The numerator being anti-symmetric, it is divisible by the Vandermonde determi-
nant so that it is indeed a polynomial.

Schur polynomials are fascinating. . . but studying them is not the purpose of
these lectures. We only recall a few fact which will be useful to us (but strongly
recommend [Mac15]).

Proposition 3.1. Let Y = (y1, . . . , yb) be another alphabet. The following identity
holds:

(18)
a∏

i=1

b∏
j=1

(xi − yj)=
∑

λ∈T(a,b)
(−1)|λ

∗|sλ(X)sλ∗ (Y),

where T(a,b) denotes the set of partitions with at most a lines and at most b columns,
and λ∗ denote the transposed of the complementary of λ (it is therefore an element of
T(b,a)).

Exercise 8. Prove Proposition 3.3 using the Vandermonde determinant on X∪Y.

Proposition 3.2. The Schur polynomials associated with partition with at most a
lines form a linear basis of Q[Xa]. The structural constant for the multiplication in
that ring are called the Littlewood–Richardson coefficients (and they do not depend
on a) and are denote cγ

αβ
.

sαsβ =
∑
γ

cγ
αβ

sγ.

The Littlewood–Richardson coefficients are nonnegative integers.

One has Q[X,Y]Sa+b ⊆Q[X,Y]Sa×Sb =Q[X]Sa ⊗Q[Y]Sb , so that if P is a symmetric
polynomial in X∪Y it can be writtenas a sum of product of symmetric polynomials
in X and symmetric polynmials in Y.

Proposition 3.3. For λ a partition, one has:

sλ(X∪Y)= ∑
α,β

cλαβsα(X)sβY,

where the coefficient cλ
αβ

are still the the Littlewood–Richardson coefficients.

Definition 3.4. Let Γ be a vinyl graph. If e is an edge of Γ, a decoration of e is
a symmetric polynomial in t(e) variables. The space of decoration of the edge e is
denoted De. A decoration of Γ is an element of the graded algebra.

DΓ := ⊗
e∈E(Γ)

De,
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where the tensor product is taken over Q. A decoration P is therefore a sum of
pure tensor and we will often assume that P is a pure tensor and extend definition
linearly. If P is such a pure tensor, we denote (Pe)e∈E(Γ) a collection of decoration of
edges of Γ such that P =⊗

e Pe.

3.2. Evaluation.

Definition 3.5. Let Γ be a vinyl graph of index k and write Xk = (x1, . . . , xk). An
omni-coloring of Γ is a map c : E(Γ)→P (Xk) such that:

• For each e ∈ E(Γ), #c(e)= t(e).
• For each generic ray r,

⋃
e∩r c(e)=Xk.

Note that the definition imply a flow property of omni-colorings at vertices.
For an omnicoloring c and a decoration P of a vinyl graph Γ, define

τ(P, c)=

∏
e∈E(Γ)

Pe(c(e))∏
v∈Vsplit(V )

∏
i∈c(l(v))
j∈c(r(v))

(xi − x j)
.

and
τ(P)=∑

c
τ(P, c).

Proposition 3.6. The quantity τ(P) is a symmetric polynomial in Xk of degree deg(P)−
2d(Γ).

Sketch of the proof. The fact that τ(P) is symmetric follows from directly from the
fact that if σ ∈ Sk, τ(P,σ · c) = σ · (P, c). The degree statement is obvious since it is

true at the level of τ(P, c). By definition, τ(P) ∈Q
[
Xa,

(
1

x j−xi

)
1≤i< j≤a

]
. By symmetry

it is enough to show that τ(P) can be written without 1
x2−x1

. For simplicity consider
the case where k = 2, in particular Γ is necessarily elementary and is the (circular)

concatenation of say m of element of the form: . There are 2m omni-colorings
for Γ corresponding to choosing either of the two possible coloring for each of these
digons and the evaluation is actually the product of evaluation of the closed digon
(each carrying its own decoration), so that it is enough to prove it for digon. In that
case it is a simple computation the two terms have the same denominator (x2 − x1)
and the sum of their numerators is obviously anti-symmetric so that we indeed get
a polynomial evaluation.

The general case follows the same idea: one gathers omni-colorings according to
sub vinyl graph covered by colors x1 and x2. In each of these batch contains 2m

omni-colorings with m being precisely the power of 1
x2−x1

in the evaluation for these
omni-colorings. Similarly m anti-symmetry features implies that we indeed can get
rid of all the (x2 − x1) in the denominator.

Exercise 9. Fill in the gaps of this proof. □

3.3. Universal construction. Let Γ be a vinyl graph of index k. Recall that DΓ is
the space of decorations of Γ, define the symmetric bilinear form (−;−)1 on DΓ by:

(19) (P;Q) := τ(PQ)|x1,...,xk 7→0 := τ0(PQ).

In other words (P;Q) extract the constant coefficient of the polynomial τ(PQ). If P
and Q are homogeneous, then (P;Q), then (P;Q) = 0 unless deg(P)+deg(Q) = 2d(Γ)
(and in that case this might be zero as well).

The radical (or kernel) of (−;−) is the sub space of DΓ defined by:

radΓ =
{
Q ∈ DΓ s.t. for all P ∈ DΓ, (P;Q)= 0

}
.
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In other words, for each P ∈ DΓ, (P;−) is a linear form and radΓ and

radΓ =
⋂

P∈DΓ

ker(P;−).

Define the gl1-state space associated with Γ to be: S1(Γ) := q−d(Γ)DΓ/radΓ.

Remark 3.7. The space S1(Γ) has finite dimension and it naturally inherits a struc-
ture of Frobenius algebra (with multiplication of degree d(Γ) and trace given by τ).
The comultiplication is far from easy to understand in general (but this would be
interesting).

Lemma 3.8. Let X be a set of a variables, Y a set of b variables and P(X,Y) =∑
i Q i(X)Ri(Y) is a symmetric polynomial in X∪Y and the Q i (resp. Ri) are symmetric

in X (resp in Y), then in DΓ, one has:

a+b

•P

a b

=∑
i

a+b

a

•Qi

b

• Ri

and
a+b
•P

a b

=∑
i a+b

a •Qi b• Ri

(20)

Sketch of the proof. The identity satisfied by P implies that for any decoration S of
Γ, τ(PS)=∑

i τ(Q iRiS), so that P −∑
o Q iRi is indeed in the radical of (−;−). □

Actually the definition of S1(−) should be extended into a functor from a category
where objects are vinyl graphs and morphisms are vinyl foams. For simplicity and
by demagogy, we decided not to mention those. Instead we will claim that certain
definitions induce morphisms between the graded vector spaces S1(Γ).

Proposition 3.9. The following locally defined maps between DΓ induce well-defined
morphisms on S1(Γ).

mulP :
a

−→
a

a

7−→
a

•P

Where P is a sym-
metric polynomial
in a variables.

(21)

zip :

a

a

b

b

−→
a b

a b

a

a

b

b

7−→ ∑
λ∈T(a,b)

(−1)|λ
∗|

a b

• sλ∗

a

•sλ

b

Notations are intro-
duced in Proposi-
tion 3.3.

(22)

unzip :

a b

a b

−→
a

a

b

b

a b

a b

7−→
a

a

b

b

Note that it is as-
sumed that that
the middle edge
carries 1 as a deco-
ration. This is not
a problem because
of dot migration
(Lemma 3.8).

(23)
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cap :
a+b

ba −→
a+b

a+b

b
• Qa

•P 7−→
a+b

•R

with
R = ∑

X∪Y=Z

P(X)Q(Y)∏
x∈X
y∈Y

(x− y)
.(24)

cup :
a+b

−→
a+b

ba

a+b

7−→
a+b

ba

(25)

assoc :

a b c

−→
a b c

a b c

7−→
a b c

Same remark as for
(23). Note that
the vertically mir-
rored morphism ex-
ists as-well and is
also well-defined.

(26)

Proof. For all these maps, one needs to show that the radical is mapped in the radi-
cal.

Polynomial multiplication and associativity are respectively straightforward and
trivial.

For the zip. Let P1 be a decoration of Γ1 such that for all decoration Q1 of
Γ1,τ0(P1Q1) = 0. Denote P2 the image of P1 and Q2 a decoration of Γ2. Because
of dot migration, we can assume that Q2 is induced by a decoration Q1 of Γ1. Let
c be an omni-coloring of Γ2, because of Propistion , if c is not induced by an omni-
coloring of Γ1, then τ(P2Q2, c)= 0. Otherwise one has: τ(P2Q2, c)= τ(P1Q1, c). Hence
τ0(P2Q2)= τ0(P1Q1) and P2 is indeed in the radical.

Exercise 10. Work out the unzip.
Hint: Use the decoration appearing in the zip map.

For the cap, one needs to realize that the formula does indeed gives a polynomial.
Similarly to the zip/unzip duality, once the cap is done, the cup is almost trivial.
Associativity is more or less trivial. □

Proposition 3.10. Using morphisms described in Proposition , one can construct the
following isomorphisms:

S1


a+b

ba

≃
[
a+b

a

]
S1


a+b

 ,(27)

S1


a+b+ c

a b c
≃ S1


a+b+ c

cba
 ,(28)
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S1


a

a

b

b

1

1

≃ S1


b

b

a

a

1

1

⊕ [b−a]S1


a

a

b

b
 ,(29)

where the Laurent polynomial coefficient indicate direct sums of q-shifted copies of a
given space.

Lemma 3.11. If Γ is a collection of circles, S1(Γ)≃Q.

Corollary 3.12. For any vinyl graph Γ, qdim(S1(Γ)) = w(Γ). In particular, if Γ is
elementary qdim(S1(Γ))= (q+ q−1)#V (Γ)/2.

3.4. gl0-state spaces.

Definition 3.13. For any pointed vinyl graph Γ of index k. The multiplication by
the polynomial xk−1 at the edges carrying the base point is an endomorphism φ⋆ of
S1(Γ). The gl0-state space is the image of φ⋆ shifted in degree by 1− k it is denote
S0(Γ).

Remark 3.14. Alternatively, one can “push” φ⋆ in the quotient of the universal
construction and define it as a quotient of S1(Γ): consider

KΓ = radΓ =
{
Q ∈ DΓ s.t. for all P ∈ DΓ,τ0(PQxk−1)= 0

}
.

One clearly has KΓ ⊆ rad(−;−), so that DΓ/KΓ is a quotient of S1(Γ) and ϕ⋆ induces
a (degree 0) isomorphism between qk−1DΓ/KΓ and S0(Γ).

Lemma 3.15. The isomorphisms listed in Proposition 3.10 hold when considering
gl0 state spaces instead of gl1’s, provided they occur away from the base point.

Lemma 3.16. If Γ is a disjoint union of chain of dumbells, then S0(Γ)= 0 unless Γ is
connected and in this case S0(Γ)= q0Q.

Proof. The first part of the statement follows from degree consideration. For the
second part, degree consideration implies that S0(Γ) is either 0 or Q. In order to see
that this space in not zero, it is enough to evaluate the decoration which is xk−1 at
the base point and 1 everywhere else. A computation shows that it is ±1.

Exercise 11. Do this computation. It is worth noticing that in S1 multiplying at the
base point by xk−1 is the same as multiplying by the product of maximal elementary
polynomial at all edge intersecting the ray containing the base point (but the one of
the base point).

□

Corollary 3.17. If Γ is not connected, then S0(Γ)= 0.

Exercise 12. Let Γ be an elementary pointed vinyl graph of index k. A state s is
a choice for each split vertex of thin edge (left or right). Each state s has a weight
w(s) ∈Z which is the number of right minus the number of left chosen. An M-state4

is a state for which the sub-graph of Γ given by edges of thickness 2 and edges of
thickness 1 chosen in s is connected. The weight of an M-state is wM(s)= w(s)+1−k.

Prove the following identity:

qdim(S0(Γ))= ∑
s M-state

qwM (s).

Hint: One can fist start proving that the right-hand side satisfies some relations
and then look at chain of dumbells.

4The letter M refers to Mikhail Khovanov.
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4. HOMOLOGY THEORIES

Similar to Khovanov homology, one can build up homology theory using hypercube
of resolutions and the “functors” S1 and S0.

4.1. gl1-homology. Let D be a diagram of a braid closure with n crossings , we
construct an oriented hypercube of dimension n using the rules given by Figure 2.
The 2n vertices of this hypercube are graded Q-vector spaces and the n2n−1 arrows
are degree 0 linear maps.

⇝ 2 q−1t0 unzip−−−−−−−−−−→ q−2t1

⇝ q2t−1 zip−−−−−−−−−→ 2 q1t0

FIGURE 2. A schematic description of the complex Cgl1 (D): each
diagram should be surrounded by S1(−) (omitted for readability):
the letter q encodes internal grading shifts, while t encodes homo-
logical grading.

By construction every square in this hypercube commutes so that one can flatten
it (by putting signs appropriately, so that every square anti-commutes) to make it a
chain complex. This chain complex is denoted Cgl1 (D).

Theorem 4.1 ([RW20]). The homology of the chain complex Cgl1 (D) is a brigraded
vector space which depends only on the link L represented by D. It is called the sym-
metric gl1-homology of L and it is denoted Hgl1 (L). Its graded Euler characteristic is
the gl1 invariant.

About the proof. One first prove that the homotopy type of Cgl1 is invariant under
braid relation. This is done by giving explicit homotopies. This is very close from
what it classically done for Khovanov homology and other variants of that. In-
variance by conjugation (first Markov move) is trivial by construction. What re-
mains is invariance by stablisation (aka Reidemeister 1). One immediately sees
that this might be problematic since we are then dealing with braids of different in-
dexes. . . and indeed invariance under this move is very difficult to established and so
far we do not have a combinatorial explanation of that. The proof relies on the proof
of invariance of the triply graded homology and on a spectral sequence which does
from that to the symmetric gl1-homology. This proof of invariance requires working
over a field of characteristic 0). □

4.2. gl0-homology. Let D be a pointed braid diagram. The presence of the base
point enables to use S0(−) instead of S1(−) in the above definition above. We shift
things a bit differently. This is sum up in Figure 3.

This gives rise to a sub-chain-complex (shifted by q1−k). Denote this chain com-
plex by Cgl0 (D).

Theorem 4.2 ([RW22]). The homology of the chain complex Cgl0 (D) is a brigraded
vector space which depends only on the marked link L⋆ represented by D. It is called
the symmetric gl0-homology of L⋆ and it is denoted Hgl0 (L⋆). In particular it is
a knot invariant. Its grade Euler characteristic is the Alexander polynomial of the
knot.
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⇝ 2 q0t0 unzip−−−−−−−−−−→ q−1t1

⇝ q1t−1 zip−−−−−−−−−→ 2 q0t0

FIGURE 3. A schematic description of the complex Cgl0 (D): each
diagram should be surrounded by S0(−) (omitted for readability): as
before, the letter q encodes internal grading shifts, while t encodes
homological grading.

About the proof. The homotopy type of Cgl0 is invariant under braid relation (away
from the base point). The same is homotopy as for the invariance of Cgl1 still do
the job. As before, invariance by conjugation (away form the base point) is trivial by
construction. Stabilization (at the base point) is actually very easy (remember that
it was difficult for Hgl1 ). If D and D′ only differs by stabilization at the basepoint,
then the chain complexes Cgl0 (D) and Cgl0 (D′) are isomorphic (and the isomorphism
is very easy to write down).

The last thing to do is to be able to move the base point. This turns out to be the
difficult point. The proof is still very much combinatorial but frustratingly technical.

□
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