1 Wiederholung:

1.1 Korrolar 2 zu Schur's Lemma

Falls ρ^1 und ρ^2 nicht isomorph sind, gilt:

$$1/g \sum_{t \in G} r_{i_2 j_2}(t^{-1}) r_{i_1 j_1}(t) = 0$$

1.2 Korrolar 3 zu Schur's Lemma

Falls $V_1 = V_2$ und $\rho^1 = \rho^2$, gilt:

$$1/g \sum_{t \in G} r_{i_2 j_2}(t^{-1}) r_{i_1 j_1}(t) = 1/n \sum_{t \in G} \delta_{i_2 i_1} \delta_{j_2 j_1} = \begin{cases} 1/n, & \text{wenn } i_1 = i_2 \text{ und } j_1 = j_2 \\ 0, & \text{sonst} \end{cases}$$

1.3 Proposition 6

Sei f eine Klassenfunktion auf G und $\rho:G\to GL(V)$ eine lineare Darstellung von G. $\rho_f:V\to V$ linear sei definiert durch

$$\rho_f = \sum_{t \in G} f(t) \rho_t.$$

Ist V irreduzibel, von Grad
n und mit Charakter χ , so ist ρ_f eine Homothetie mit Faktor
 λ gegeben durch

$$\lambda = 1/n \sum_{t \in G} f(t) \chi(t) = g/n(f|\chi^*).$$

2 Die kanonische Zerlegung einer Darstellung

 $\rho:G\to GL(V)$ sei eine lineare Darstellung von G. Wir werden eine direkte Summenzerlegung von V definieren, die weniger "fein" als die Zerlegung in irreduzible Darstellungen ist, die aber den Vorteil hat eindeutig zu sein. Sie sieht folgendermaßen aus:

Seien χ_1,\ldots,χ_h die verschiedenen irreduziblen Charaktere der Darstellungen W_1,\ldots,W_h von G und seien n_1,\ldots,n_h ihre Grade. Außerdem sei $U_1\oplus\cdots\oplus U_m$ eine Zerlegung von V als direkte Summe irreduzibler Darstellungen. Dann bezeichne mit V_i für $i=1,\ldots,h$ die direkte Summe derjenigen der U_1,\ldots,U_m , die zu W_i äquivalent sind. Daraus ergibt sich die kanonische Zerlegung

$$V = V_1 \oplus \cdots \oplus V_h$$
.

(Mit anderen Worten, zerlegen wir zunächst V in eine Summe irreduzibler Darstellungen, und fassen dann die äquivalenten Darstellungen zusammen.)

2.1 Satz 8

Die kanonische Zerlegung besitzt folgende Eigenschaften:

- (1) Die Zerlegung $V = V_1 \oplus \cdots \oplus V_h$ hängt nicht von der ursprünglich gewählten Zerlegung in irreduzible Darstellungen ab.
- (2) Die Projektion p_i von V auf V_i verbunden mit der Zerlegung, wird durch die Formel

$$p_i = n_i / g \sum_{t \in G} \chi_i(t)^* \rho_t$$

gegeben.

Bew: Wir beweisen (2). Da die Projektionen p_i die V_i bestimmen, folgt die Behauptung (1). Wir setzen

$$q_i = n_i / g \sum_{t \in G} \chi_i(t)^* \rho_t.$$

Sei W eine irreduzible Darstellung mit dem Charakter χ und dem Grad n. Aus Proposition 6 folgt, daß $q_i \mid_W$ eine Homothetie mit Faktor $n_i/n(\chi_i|\chi)$ ist; sie ist also 0, wenn $\chi_i \neq \chi$, und 1, wenn $\chi_i = \chi$. Mit anderen Worten ist q_i die Identität auf einer irreduziblen Darstellung isomorph zu W_i und ist Null auf den anderen. Im Hinblick auf die Definition von V_i folgt, daß q_i die Identität auf V_i , und 0 auf V_j , $j \neq i$ ist. Wenn wir nun ein $x \in V$ in seine Komponenten zerlegen:

$$x = x_1 + \cdots + x_h$$

so bekommen wir $q_i(x) = q_i(x_1) + \cdots + q_i(x_h) = x_i$. D.h., daß q_i gleich der Projektion p_i von V auf V_i ist.

Demnach läßt sich die Zerlegung einer Darstellung V in zwei Schritten durchführen. Zuerst bestimmt man die kanonische Zerlegung $V = V_1 \oplus \cdots \oplus V_h$, mittels der Formeln für die Projektionen p_i . Dann, wenn es erforderlich ist, wählt man eine Zerlegung von V_i in eine direkte Summe irreduzibler Darstellungen, die isomorph zu W_i sind:

$$V_i = W_i \oplus \cdots \oplus W_i$$
.

Die letzte Zerlegung kann man im allgemeinen auf unendlich viele Weisen durchführen.

2.2 Beispiel 1

Sei $G = \{1, s\}$ mit $s^2 = 1$. Diese Gruppe besitzt zwei irreduzible Darstellungen von Grad 1, W^+ und W^- , die $\rho_s = +1$ und $\rho_s = -1$ entsprechen. Die kanonische Zerlegung von V lautet also $V = V^+ \oplus V^-$; die Komponente V^+ wird von den $x \in V$ erzeugt, die symmetrisch sind $(\rho_s x = x)$, die Komponente V^- dagegen von denen, die antisymmetrisch sind $(\rho_s x = -x)$. Die entsprechenden Projektionen sind:

$$p^+x = \frac{1}{2}(x + \rho_s x), \qquad p^-x = \frac{1}{2}(x - \rho_s x).$$

 V^+ und V^- in irreduzible Komponenten zu zerlegen, bedeutet einfach, diese Räume als direkte Summe von Geraden zu zerlegen.

2.3 Übung

 H_i sei der Vektorraum der linearen Abbildungen $h: W_i \to V_i$ mit $\rho_s h = h \rho_s$ für alle $s \in G$. (h_1, \ldots, h_k) sei eine Basis von H_i , und bilde die direkte Summe $W_i \oplus \cdots \oplus W_i$ von k Exemplaren W_i . Offensichtlich definiert das System (h_1, \ldots, h_k) eine lineare Abb. h von $W_i \oplus \cdots \oplus W_i$ in V_i . Zeige, dass es sich hierbei um einen Isomorphismus handelt und dass sich jeder Isomorphismus auf diese Weise gewinnen läßt.

3 Die explizite Zerlegung einer Darstellung

Man übernehme die Notation aus Sektion 2, und sei

$$V = V_1 \oplus \cdots \oplus V_h$$

die kanonische Zerlegung gegebener Darstellung. Nun wollen wir explizit die Zerlegung von V_i in eine direkte Summe von Unterdarstellungen, die isomorph zu W_i sind, konstruieren. Sei W_i , durch die Basis (e_1,\ldots,e_n) , in Matrixform $(r_{\alpha\beta}(s))$ gegeben; wir haben $\chi_i(s) = \sum_{\alpha} r_{\alpha\alpha}(s)$ und $n = n_i = \dim W_i$. Für jedes Paar α, β von 1 bis n, bezeichne $p_{\alpha\beta}$ die lineare Abbildung von V zu V, definiert durch:

$$(*): p_{\alpha\beta} = n/g \sum_{t \in G} r_{\beta\alpha}(t^{-1})\rho_t.$$

3.1 Proposition 8

(a) Die Abbildung $p_{\alpha\alpha}$ ist eine Projektion; sie ist Null auf V_j , $j \neq i$. Ihr Bild $V_{i,a}$ ist in V_i enthalten, und V_i ist eine direkte Summe von $V_{i,a}$ für $1 \leq \alpha \leq n$. Es gilt $p_i = \sum_{\alpha} p_{\alpha\alpha}$.

(b) Die lineare Abb. $p_{\alpha\beta}$ ist Null auf V_j , $j \neq i$, aber auch auf $V_{i,\gamma}$ für $\gamma \neq \beta$; sie definiert einen Isomorphismus von $V_{i,\beta}$ auf $V_{i,\alpha}$.

(c) Sei $x_1 \neq 0$ ein Element aus $V_{i,1}$ und sei $x_{\alpha} = p_{\alpha 1}(x_1) \in V_{i,\alpha}$. x_{α} sind linear unabhängig und erzeugen einen, auf G stabilen, Untervektorraum $W(x_1)$ mit Dimension n. Für jedes $s \in G$, gilt:

$$\rho_s(x_\alpha) = \sum_\beta r_{\beta\alpha}(s) x_\beta$$

(Insbesondere ist $W(x_1)$ isomorph zu W_i).

(d) Sei $(x_1^{(1)}, \ldots, x_1^{(m)})$ eine Basis von $V_{i,1}$. Die Darstellung V_i ist eine direkte Summe von Unterdarstellungen $W(x_1^{(1)}), \ldots, W(x_1^{(m)})$, definiert wie in c).

(Folglich gibt die Wahl der Basis von $V_{i,1}$ die Zerlegung von V_i in eine direkte Summe von Darstellungen, isomorph zu W_i an.)

Bew: Die Gleichung (*) erlaubt uns $p_{\alpha\beta}$ in beliebigen Darstellungen von G zu definieren und speziell in den irreduziblen Darstellungen W_i . Für W_i gilt:

$$p_{\alpha\beta}(e_{\gamma}) = n/g \sum_{t \in G} r_{\beta\alpha}(t^{-1})\rho_t(e_{\gamma}) = n/g \sum_{\delta} \sum_{t \in G} r_{\beta\alpha}(t^{-1})r_{\delta\gamma}(t)e_{\delta}.$$

Aus 1.2 folgt:

$$p_{\alpha\beta}(e_{\gamma}) = \begin{cases} e_{\alpha}, & \text{wenn } \gamma = \beta \\ 0, & \text{sonst.} \end{cases}$$

Somit entspricht $\sum_{\alpha} p_{\alpha\alpha}$ der Identität auf W_i , und es gilt

$$p_{\alpha\beta} \circ p_{\gamma\delta} = \begin{cases} p_{\alpha\beta}, & \text{wenn } \beta = \gamma \\ 0, & \text{sonst.} \end{cases}$$

$$\rho_s \circ p_{\alpha\gamma} = \sum_{\beta} r_{\beta\alpha}(s) p_{\beta\gamma}.$$

Für W_j , mit $j\neq i$, benutzen wir 1.1 und die gleiche Argumentation wie oben um zu zeigen, dass alle $p_{\alpha\beta}$ Null sind.

Nun zerlegen wir V in eine direkte Summe von, zu W_j isomorphen, Unterdarstellungen und wenden das vorige zu jeder von diesen Darstellungen an um (a) und (b) zu zeigen. Außerdem, bleibt das oben genannte auch in V geltend.

$$\rho_s(x_\alpha) = \rho_s \circ p_{\alpha 1}(x_1) = \sum_{\beta} r_{\beta \alpha}(s) p_{\beta 1}(x_1) = \sum_{\beta} r_{\beta \alpha}(s) x_\beta,$$

zeigt (c) und (d) folgt aus (a), (b) und (c).